Sensitive neutron detection method using iodine-containing scintillators

Dmitry Ponomarev 2018

³He Detectors and need for an alternative

- Gas proportional detectors
- Golden standard for neutron measurements
- Thermal neutron cross section of ${}^{3}\text{He} = 5333 \pm 7$ barns
- $n+{}^{3}He \rightarrow {}^{3}H+{}^{1}H+764keV$
- Negligible sensitivity to gamma rays
- Increased gas pressure per volume \rightarrow more sensitive detector

Drawbacks:

- ³He proportion in natural He gas=0,000137 %
- Artificially produced from tritium decay in nuclear reactors
- Low availability
- Costs up to \$2,000/L
- Not only needed for neutron detection
- Diameter of the detector is small (maximum 5 cm)
- Limited export of ³He

Motivation of neutron measurements with NaI(Tl), CsI(Tl), CsI(Na), CsI scintillation detectors

- widely available,
- simple to use,
- relatively cheap,
- relatively easy to produce,
- can be very radioactive clean,
- highly efficient for γ- detection (multipurpose)

Short Description Detector Neutrons NaI(Tl) thermal boron lining with available NaI detectors NaI(Tl) thermal high-energy photons following (n,γ) reaction on ²³Na NaI(Tl) triple β - γ - γ coincidences in two detectors following (n,γ) thermal reaction on ²³Na NaI(Tl) thermal activated NaI detector(¹²⁸I β -decay, T_{1/2} = 25min and ²⁴Na β -decay, $T_{1/2} = 15h$) 57.6keV signal from ¹²⁷I(n,n')inelastic scattering CsI(Na) fast NaI(Tl), fast 1-200MeV neutrons, (n,p) and (n,α) reactions, pulse-CsI(Tl) shape discrimination

NaI (solid) has **545** times as many moles as an equal volume of 3 He (gas, normal pressure)

Iodine has only one stable isotope: ¹²⁷I $\sigma_{\gamma} = 6.2(2)$ barn (860 times lower than ³He)

Efficiency of thermal neutron capture in 1 kg NaI detector is ~50% (almost all captures will be on iodine because for ²³Na: $\sigma_{\gamma} = 0.9(1)$ barn)

Result of neutron capture is ¹²⁸I in 6.8 MeV excited state

Cs124	Cs125	Cs126	Cs127	Cs128	Cs129	Cs130	Cs131	Cs132	Cs133
1+	(1/2+)	1.04 m	1/2(+)	1+	1/2+	1+	5/2+	2+	7/2+
EC T	EC	EC	EC	EC	EC	EC,β·	EC	EC,8	100
Xel23	Xel24	Xel25	Xel26	Xel27	Xel28	Xel29	Xe130	Xe131	Xel32
2.08 h (1/2)+	0+	16.9 h (1/2)+	0+	36.4 d 1/2+	0+	1/2+	0+	3/2+	0+
EC	0.10	EC	0.09	EC *	*	26.4	41	21.2	26.9 *
I122	I123	I124	1125	1126	1127	I128	1129	I130	I131
3.63 m 1+	13.27 h 5/2+	4.18 d	59.408 d 5/2+	13.11	5/2+	.4.99 m 1+	1.57E7 y 7/2+	12.36 h 5+	8.02070 d 7/2+
EC	EC	EC	EC	EC.8	100	EC 8-	6 [.] *	8. ×	÷
Tel21	Tel22	Tel23	Tel24	Tel2.	Tel26	Tel27	Tel28	Tel29	Tel30
16.78 d	0+	1E+13 y	0+	1/2+	6+	9.35 h 3/2+	8E+24 y	69.6 m 3/2+	1.25E+21 y
* *	*	EC *	4.016	****	10.05	8. ×	β- _B -	* ÷	β- *
C1 120	2.003	0.908	4.810	61.134	10.55	P	31.69	P	C1 120
56120	50121	2 20 4	50123	50124	2 2582 -	50120	3854	50128	56129
15.09 m	5/2+	2.70 a	7/2+	3-	7/2+	(8)-	7/2+	8-	7/2+
*	*	* *	10.51	* 8.	÷.	e. *	8.	÷.	* 8.
E.C.	57.36	EC.,0	474.04	2	p.	p.	p.	p.	p.

Description of the method

- ¹²⁸I decay to the ground state proceeds through a series of low-energy levels
- ¹²⁸I has 137.8 keV isomeric state
- $T_{1/2} = 0.845(20) \,\mu sec$
- ~40% de-excitations pass through the 137.8 keV level
- Delayed coincidences to identify neutrons

 $^{128}\mbox{I}$ excited energy levels below 200 keV and their decay transitions

Energy level in ¹²⁸ I (keV)	T 1/2 (ns)	Energy levels following decay (keV)
180		160.8, 85.5, 27.4
167.4	175 ± 15	137.8 1
160.8		27.4, 0
151.6		85.5, 27.4
144.0		133.6 8
137.8	845 ± 20	133.6, 85.5
133.6	12.3 ± 0.5	85.5, 27.4, 0
128.2		85.5
85.5		27.4
27.4		0
0		

Test in Dubna in 2016

NaI(Tl) Ø63 mm x 63 mm PMT Hamamatsu R6091 CAEN Multi channel analyzer DT5780

Data acquisition in list mode

Simultaneous measurement with bare ³He detector

Energy scale calibration near 137 keV with 139 Ce (166 keV γ -line)

Strong PuBe neutron source (10⁴ n/sec) to verify the effect

Measurements of ambient neutrons

Neutron monitoring in Dubna

Absolute sensitivity to thermal neutrons is 6.5 ± 1.0 counts sec⁻¹ for thermal 4π neutron flux 1 n cm⁻² sec⁻¹

Accidental background for this detector and shield is **0.8 events day**⁻¹ for any delay time window at **1 μsec**

Potential for low neutron flux measurements

- Accidental background is almost quadratically proportional to the overall background signal.
- Thus decreasing overall background in ten times it decreases in hundred times background in neutrons signals.
- Background less neutron measurements can be achieved by using high purity detectors and shielding.

Test in LSM (started in April 2017)

NaI(Tl) Diameter 63 mm Length 63 mm ~720 grams **PMT** Hamamatsu R6091

CAEN Multi channel analyzer DT5780

Shield Simple Cu+Pb shield near EDW-I

Calibrations

γ : Th + K(internal) Neutron : AmBe (20 n/sec)

First results in LSM / calibration

Results of first tests in LSM

Conclusion and outlooks

• Measurements of low flux of thermal neutron with existing iodine containing detectors is revealed;

- For precise measurements we need bigger detector with low background;
- Several low background detectors with different sizes are already purchased;
- For low background environment 10⁻⁸ n cm⁻² sec⁻¹ neutron level could be possible to measure with bigger detector (100 kg), sensitivity will be comparable with ³He;
- Simultaneous measurements of fast (57.6 keV line) and thermal (this method) neutrons are possible
- Tests in LSM will be continued.

Results in LSM

