Study of feasibility of η_c measurements at SPD in resonance decays

20. 12. 2023

A. N. Skachkova (DNLP, JINR, Dubna)

Anna.Skachkova@cern.ch, annask@jinr.ru

• $\eta_c \rightarrow \phi \phi \rightarrow 2(K^+K^-)$ decay

The main PDG parameters

- η_c (1S) Mass = 2983.9 ± 0.4 MeV ~ 2.984 GeV
- η_c (1S) Width = 32.0 ± 0.7 MeV ~ 0.032 GeV
- Branching $\eta_c \rightarrow \phi \phi = (1.58 \pm 0.19) \times 10^{-3}$
- ϕ (1020) Mass = 1019.461 ± 0.016 MeV ~1.019 GeV
- *φ* (1020) Width = 4.249 ± 0.013 MeV ~ 0.00425 GeV
- Branching ϕ (1020) $\rightarrow K^+K^- = (49.1 \pm 0.5) \%$

Thus Branching $\phi \phi \rightarrow 2 (K^+K^-) = 24.1 \%$

Total Branching $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-) = 3,8090798 \times 10^{-4}$

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

The Study is focused on possibility of background separation

- Pythia 8.309 (p + p, $\sqrt{s} = 27$ GeV). The main background minimum-bias (SoftQCD:nonDiffractive)
- Taking as a starting point cross section of η_c production ~ 400 nb, we consider the channel $g g \rightarrow \eta_c + g$ (cross-section from PYTHIA8 $\sigma_{\eta_c + g} = 416$ nb)

Formulae for η_c production in Pythia8 were taken as proposed by Anton Anufriev in his talk (11.04.23) (We can also expect for $g g \rightarrow \eta_c$ cross-section $\sigma_{\eta_c} = 2230 \text{ nb} - 5.36 \text{ times higher !!!}$)

 η_c is forced to decay to $\phi \phi$, thus the final cross-section for

3

 $g g \rightarrow \eta_c + g \rightarrow \varphi \varphi + g \rightarrow 2 (K^+K^-) + g$ should be $\sigma_{\eta c + g} = 0.159 \text{ nb} \rightarrow -1.59 * 10^5 \text{ events/year}$ (Year = 10⁷ sec, Lum = 10³² /cm² *sec)

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

π^{\pm} / K[±] reconstruction

At P > 1.4 GeV we potentially can have problems with π^{\pm} / K^{\pm} misidentification. For the moment we have at $P_{K\pm} < 1.2$ GeV — 100% identification. At the region 1.2 GeV $< P_{K\pm} < 1.4$ GeV $\sim 95\%$ (see talks of Artem Ivanov of 6.10.2022 & 27.04.2023).

So at first approximation we considered the condition

when <u>all 4 signal K[±] have P_{K±} < 1.4 GeV</u> (~ ½ of events)

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

φ reconstruction

For φ reconstruction we are looking for K⁺K⁻ combinations (φ candidate) in the region $0.92 < M_{inv} (K^+K^-) < 1.08 \text{ GeV}$ \downarrow 0.99 < M_{inv} (K⁺K⁻) < 1.05 GeV

including 1.5% Gauss smearing of P

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay

y 20. 12. 2023

η_c reconstruction

Current results

The proposed selection criteria

7

 $P(K\pm) < 1.4 \text{ GeV} \&\& 0.99 < M_{inv} (K^+K^-) < 1.05 \text{ GeV} \&\& 2.85 < M_{inv} (\phi\phi) < 3.09 \text{ GeV}$

allowed to achieve **background suppression** to **766.3 nb** (typos & errors in the last talk)

to the level of 3.22 * 10⁻³ % that corresponds to

S/B = 2.94 * 10⁻⁵ for $gg \rightarrow \eta_c + g$ channel.

Thus we can expect $S/\sqrt{(S+B)} \approx 0.815$

III Fraction of signal events where at least 1K in 2 (K⁺K⁻) combination is fake one is ~ 0.67%

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

Pφ_{candidate} correlations

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

|PTφ| correlations

PT vecsum = vector sum of PT's of $(K^{+}K^{-})(K^{+}K^{-})$ forming η_{c} candidate.

PT scalsum = scalar sum of PT's of (K⁺K⁻)(K⁺K⁻) forming **η**_c candidate. -->

Shows better difference in distributions

Can be used for BKG suppression : *Cut PT scalsum > 1.8 GeV*

A.N.Skachkova

9

 $\mathbf{\eta}_{c}$ study in $\boldsymbol{\eta}_{c} \rightarrow \boldsymbol{\varphi} \boldsymbol{\varphi} \rightarrow 2 (K^{+}K^{-})$ decay 20. 12. 2023

PZφ correlations

10

Pz scalsum = scalar sum of Pz's of $(K^{+}K^{-})(K^{+}K^{-})$ forming η_{c} candidate.

Pz vecsum = vector sum of Pz's of (K⁺K⁻)(K⁺K⁻) forming n_c candidate. --> Shows better difference in distributions

Can be used for BKG suppression : *Cut: PZ vecsum > 0.2 GeV*

A.N.Skachkova

n η_c study in $\eta_c \rightarrow \varphi \ \varphi \rightarrow 2 \ (K^+K^-)$ decay 20. 12. 2023

R (K⁺K⁻) distributions

Distributions of

R = $\sqrt{\Delta \eta^2 + \Delta \phi^2}$ = $\sqrt{(\eta_{K^+} - \eta_{K^-})^2 + (\phi_{K^+} - \phi_{K^-})^2}$

shows some difference ↓

Can be used R < 0.6

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \varphi \ \varphi \rightarrow 2 \ (K^+K^-)$ decay 20. 12. 2023

Proposed cuts

1. $P(K^{\pm}) < 1.4 \text{ GeV}$ & $0.99 < M_{inv}(K^{+}K^{-}) < 1.05 \text{ GeV}$ & $2.85 < M_{inv}(\phi\phi) < 3.09 \text{ GeV}$

- N1 + R (K⁺K⁻) > 0.6 GeV
 N1 + PT scalsum 4K > 1.8 GeV
- 4. N1 + 0.2 GeV < PZ vecsum 4K
- 5. N3 + N4 (Pz vecsum Cut + PT scalsum Cut)
- 6. N2 + N3 ($R(K^{+}K^{-})$ Cut + PT scalsum Cut)
- 7. N2 \neq N4 (R (K⁺K⁻) Cut + PZ vecsum Cut)
- 8. N^2 + N3 + N4 ($R(K^+K^-)$ Cut + PT scalsum Cut + PZ vecsum Cut)

Results of additional cuts 2-6 on the events sample after 1-st set of cuts is shown in the table below

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

Current results

Cut N	Rest of Sig	Rest od BKG	S/B ratio
2.	29.7 %	4.9 %	1.78 * 10-4
3.	79.6 %	19.9 %	1.18 * 10-4
4.	82.7 %	48.8 %	4.99 * 10 ⁻⁵
5.	64.7 %	9.0 %	2.12 * 10-4
6.	27.7 %	3.2 %	2.55 * 10-4
7.	23.8 %	2.1 %	3.34 * 10 ⁻⁴
8.	22.1 %	1.3 %	5.01 * 10 -4

Thus the best possible

S/√(S+B) ≈ 1.58

And final statistics ~ 5000 events/year

(in the case of $\sigma_{\eta c} \approx 400 \text{ nb}$)

In the case of bigger η_c cross section <u>we can assume</u> <u>better results</u>

A.N.Skachkova η_c study in $\eta_c \rightarrow \varphi \phi \phi \rightarrow 2 (K^+K^-)$ decay 20. 12. 2023

$\eta_c \rightarrow \rho \rho \rightarrow 2(\pi^+\pi^-)$ decay The main PDG parameters

- Branching $\eta_c \rightarrow \rho \rho = (1.5 \pm 0.4) \%$
- *p* (770) Mass ≈ 762 ÷ 775 MeV ~ 0.77 GeV
- *p* (770) Width ≈ 147 ÷ 151 MeV ~ 0.149 GeV
- Branching ρ (770)^o $\rightarrow \pi^+\pi^- = ~100$ %

Thus

- Total Branching $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-) = ~ 1.5 \times 10^{-2}$
- $\sigma_{\eta c + g \to \rho \rho \to 2 (\pi + \pi)} = 6.284 \text{ nb} \Rightarrow \sim 6.284 * 10^6 \text{ events/year}$ (Year = 10⁷ sec, Lum = 10³² / cm² *sec)

A.N.Skachkova η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

ρ reconstruction

For $\mathbf{\rho}$ reconstruction we are looking for $\mathbf{\pi}^{+} \mathbf{\pi}^{-}$ combinations ($\mathbf{\rho}$ candidate) in the region

 $0.73 < M_{inv} (\pi^+\pi^-) < 0.83 \text{ GeV}$

including 1.5% Gauss smearing of P

(up to 58 π⁺π⁻ combinations / signal event & up 11 ρ candidates / signal event)

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

η_c reconstruction

Current results

The proposed selection criteria

 $P(\pi^{\pm}) < 1.4 \text{ GeV } \&\& 0.73 < M_{inv}(\pi^{+}\pi^{-}) < 0.83 \text{ GeV } \&\& 2.89 < M_{inv}(\rho\rho) < 3.09 \text{ GeV}$

allowed to achieve **background suppression** to **9.13 * 10⁵ nb** to the level of **3.82 * 10⁻³** that corresponds to

S/B = 2.59 * 10⁻⁷ for $gg \rightarrow \eta_c + g$ channel.

!!! At the same time the part of signal events where at least 1π in $2(\pi^+\pi^-)$ combination is fake one ~ 55% \Rightarrow wrong η_c reconstruction. **!!!**

 \Rightarrow ??? May be to test 1-st algorithm in which we choose a case with **exactly 2** $\pi^+\pi^-$ combinations (ρ candidates) in the giving $M_{inv}\rho / M_{inv}\eta_c$ spread \Rightarrow possible big loss of statistics

A.N.Skachkova η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

|**Pp**| correlations

A.N.Skachkova

18

 η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

|**PTp**| correlations

19

PT vecsum = vector sum of PT's of $2\pi^{+}\pi^{-}$ forming η_{c} candidate.

PT scalsum = scalar sum of PT's of $2\pi^{+}\pi^{-}$ forming η_{c} candidate. -->

Shows better difference in distributions

↓ Can be used for BKG suppression : *Cut PT_{scalsum} > 2.3 GeV*

No significant difference in Z direction

A.N.Skachkova

 η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

R ($\pi^+\pi^-$)/**R** π_{vertex} distributions

S

g

n

a

B

a

Overflow

R Piprod, mm

100 200 300 400 500 600

581

R^{Pisig} distribution

Distributions of

R =
$$\sqrt{\Delta \eta^2 + \Delta \phi^2} = \sqrt{(\eta_{\pi^+} - \eta_{\pi^-})^2 + (\phi_{\pi^+} - \phi_{\pi^-})^2}$$

Now do not show any difference

Some part of π 's in signal combinatoin show $R_{\pi production vertex} > 0 \Rightarrow fake \pi$

(~17% fake signal event combinations)

 $R_{\tau vtx} < 1 \, mm$ should be used

A.N.Skachkova η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

Current results

Proposed cuts

1. $P(K^{\pm}) < 1.4 \text{ GeV}$ & 0.73 < $M_{inv}(\pi^{+}\pi^{-}) < 0.83 \text{ GeV}$ & 2.89 < $M_{inv}(\rho\rho) < 3.09 \text{ GeV}$

- 2. N1 + $R_{\tau x} < 1 mm$ 3. N1 + *PT* scalsum $4\pi > 2.3 GeV$
- 4. N2 + N3 (R_π_{vtx} Cut + PT scalsum Cut)

Thus the best possible

S/√(S+B) ≈ 0.067	S/B ratio	Rest od BKG	Rest of Sig	Cut N
	1.01 * 10-7	23.7 %	9.25 %	2.
And final statistics ~ 57 events/year	2.91 * 10 ⁻⁶	4.78 %	53.6 %	3.
(in the case of $\sigma_{nc} \approx 400 \text{ nb}$	7.82 * 10-7	0.81 %	2.43 %	4.

A.N.Skachkova η_c study in $\eta_c \rightarrow \rho \rho \rightarrow 2 (\pi^+ \pi^-)$ decay 20. 12. 2023

Conclusions

22

- With the current algorithm of particle sampling there is no chance to observe η_c in η_c → ρ ρ → 2 (π⁺π⁻) decay channel. The algorithm with the presence of exactly 2ρ candidates in event will be considered later.
- If the cross section of η_c production turns out to be higher, as shown **A.Anufriev**, we will have the opportunity to observe η_c in $\eta_c \rightarrow \phi \phi \rightarrow 2$ (K⁺K⁻) decay channel.
- Some other other variables (for example *R***(ρ,ρ)**, *R***(φ,φ)) can also be considered for background suppression**

Thank you for your attention!

A.N.Skachkova η_c study in *resonance* decays 20. 12. 2023