### On BBC performance in the magnetic field

lgor Denisenko iden@jinr.ru

SPD Physics & MC meeting 20 December 2023

- We can expect magnetic field to smear polarization effect for BBC.
- For the time of study we don't have event generator for collisions of polarized particles.
- Weighting procedure was used:
  - weight for event = a product of  $(1 + A_N(x_F)^* \cos(\varphi))$  for each track.
  - Weighting error is  $\sigma^2 = (\text{sum w})^2 / (\text{sum w}^2)$ .
- Zhanibek has done such study in SpdRoot, but results seemed to have some artifacts.
- Here is generator-level investigation of possible reasons will be given.



### **Simulation details**

- Constant magnetic field of 1T,  $\sqrt{s} = 27$  GeV.
- All tracks are analytically parameterized as helixes.
- Rough geometry dimensions are used. Time t = t(l, pz), the rotation angle is determined from x(t) and y(t).
  Track reaches BBC if when it paths trough BBC plane r\_min < r < r\_max.</li>
- Two-dimensional histograms  $xF \times \phi$  for generated particles and for particles in BBC are filled and analyzed.
- Only charged asymmetries of charged pions are considered (no weight modification due to kaons or protons)
- For extraction of asymmetries the  $\phi$  distribution is fitted in each  $x_{_F}$  bin.





### Measured asymmetries



SPD TB, 12.01.23

#### On BBC performance in the magnetic field

### **Consistency check for pions**



### Integral distributions of generated events and tracks in BBC





### Generated tracks in x<sub>r</sub> bins





#### On BBC performance in the magnetic field

### **Tracks in BBC in x<sub>F</sub> bins**



#### On BBC performance in the magnetic field

- A simple model and weighting procedure are studied at  $\sqrt{s} = 27 \text{ GeV}$ :
  - There are **notable artifacts** of the weighting procedure in the regions with no asymmetry ( $0 < x_F < 0.2$ ).
  - The asymmetry for  $x_{F} > 0.2$  is almost the same for BBC and generated events.
  - Considering that we do not expect asymmetry in the region where we have artifacts, BBC should perform well in the magnetic field.

- The model above gives weighting artifacts ~0.001, but not a total asymmetry of 1%.
- I tried tried experiment with weighing events based on the transverse momenta of quark generated by Pyhtia8 difficult to get consistent results.
- Current knowledge seems **too scarce** to make efforts to reproduce data with 1% asymmetry (cocktail of pions, kaons, and protons with not well-measured asymmetries)
- As the next model I considered only pions (CT below stands for all charged pions) from MB events and used step-function to weight π<sup>+</sup> and π<sup>-</sup> (same weighting method):

$$- A_{N}(\pi^{+}) = 2\%$$
 and  $A_{N}(\pi^{-}) = -1\%$  for  $x_{F}>0$ , both zero for  $x_{F}<0$ 

$$- A_{N}(\pi^{+}) = 6\%$$
 and  $A_{N}(\pi^{-}) = -5\%$  for  $x_{F} > 0$ , both zero for  $x_{F} < 0$ 

- $A_{_N}(\pi)$  = -5% for x<sub>F</sub>>0, zero for x<sub>F</sub><0
- Statistics ~10<sup>9</sup> Pythia8 events



## $x_{_{F}}$ distribution and $\pi^{+}/\pi^{-}$ fraction



Central bins can be extremely important



- Small correlation between  $\pi^+$  and  $\pi^-$  is notable
- Visible asymmetry in 0 <  $x_{F}$  < 0.1 is reduced by ~ 20% for  $\pi$ + and  $\pi$  separately
- Visible asymmetry for CT in the same bin is larger than initial (see next slides)



• There are deviations in shape for the first two figures, but generally figures are Ok.

#### Tracks ( $\pi^+$ and $\pi^-$ together) after propagation to BBC (10 bins for 0 < xF < 1)



• The shape in the first bin is notably different



#### Tracks ( $\pi^+$ and $\pi^-$ separately) before propagation to BBC (10 bins for 0 < xF < 1)



• There is compensation of  $\pi^{+}$  and  $\pi^{-}$  asymmetries

16



#### Tracks ( $\pi^+$ and $\pi^-$ separately) after propagation to BBC (10 bins for 0 < xF < 1)



• For the first bin there is only **partial compensation** of  $\pi^+$  and  $\pi^-$  asymmetries



# $A_{N}(\pi^{+}) = 6\%$ and $A_{N}(\pi^{-}) = -5\%$ for $x_{F} > 0$ , both zero for $x_{F} < 0$



- $\pi^{-}$  asymmetry is large than weighting functions
- Generally, situation is very similar to the previous case





• If total asymmetry of 1% comes mostly from the **same sign** of particles in **central xF bins**, we can expect 20-30% lower value to observed in BBC. If it is result of **compensation of opposite charges**, it might be even bigger. If it comes **not from central bins** then the observed asymmetry should not be affected by the magnetic field.

- Weighting is not perfect method. Is there any way to improve the analysis?
- What about lower energies?
- This calculation has not been cross-checked with SpdRoot yet.