

Radiopharmaceutical applications Current status and future perspectives

Ignacio Hernández González JINR/CENTIS

Topics to be addressed:

Radiopharmaceuticals for diagnosis and therapy.

What a radiopharmaceutical is?

Characteristics that distinguish radiopharmaceuticals from other drugs.

Principle of radiopharmaceutical applications.

Methods for radiopharmaceuticals preparations.

Radiolabeling procedures

Clasification of radiopharmaceuticals based on its preparation method

Recent trends in radiopharmaceutical research and development.

Theranostic radiopharmaceuticals

New radionuclides for diagnosis and therapy

Nuclear imaging techniques in other drugs research

What a pharmaceutical is?

In the broadest sense, any chemical substance capable of interacting with a living organism to produce a desired action or effect. From the medical point of view, any substance used for the prevention, treatment, cure or to diagnose a disease in humans or animals.

What a RADIOpharmaceutical is?

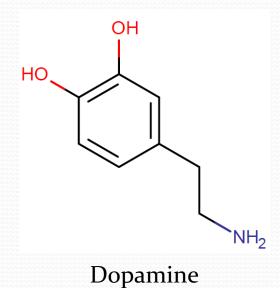
A molecule that incorporates a radioactive element in its structure and whose emission, as a result of its radioactive decay, is used to trace in physiological processes or molecular events (radiodiagnostic) or to destroy the tissue where it is selectively located (radiotherapy).

Diagnostic vs therapy

Characteristic	Radiodiagnostic	Radiotherapy	
Objective	Non invasive imaging	Destroy the tissue	
Type of emission	γ,eta^+	β, α	
Energy transfer in tissues	Low	High	
Relative target uptake	Depend on the procedure	High	
Target tissue residence	According with diagnostic procedure	As high as possible	
Non target clearance	Fast	Very fast	
Metabolism	Facilitate uptake in target tissue and/or elimination from non target tissue		

Characteristics of radiopharmaceuticals preparations:

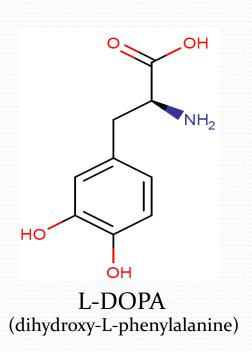
- Low cost and high disponibility
- Easy preparation at hospital facility
- Quality control available at hospital facility


As every parenteral formulation:

- Steril
- Non pyrogenic
- Isotonic and balanced pH

Principle of ANALOGY

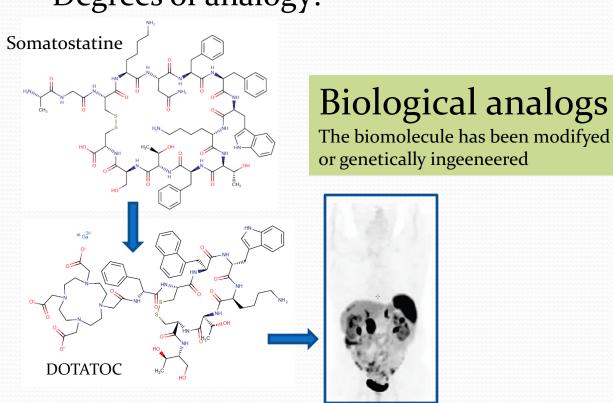
Degrees of analogy:

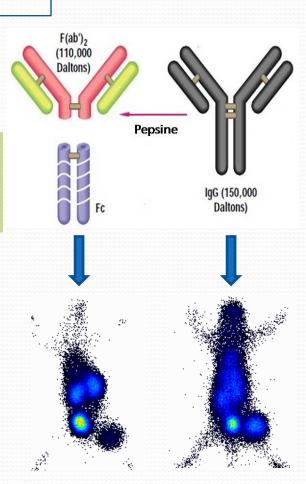

Chemical identity

Labeled with a radionuclide of a component element of the molecule

Principle of ANALOGY

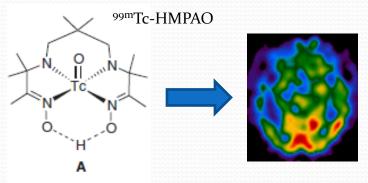
Degrees of analogy:

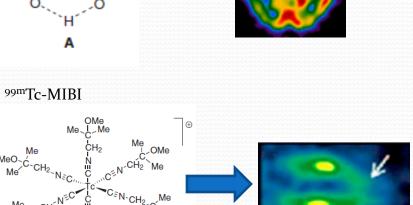

Structural analog

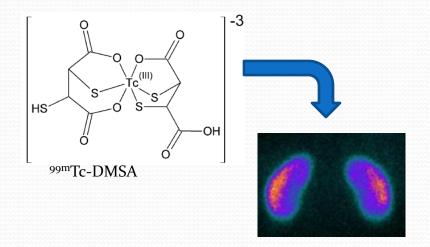

The molecule need to be modified to add the radionuclide

Principle of ANALOGY

Degrees of analogy:



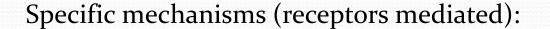


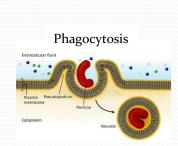


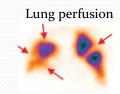
Principle of ANALOGY

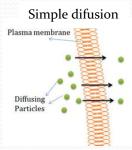
Degrees of analogy:

Functional analogs

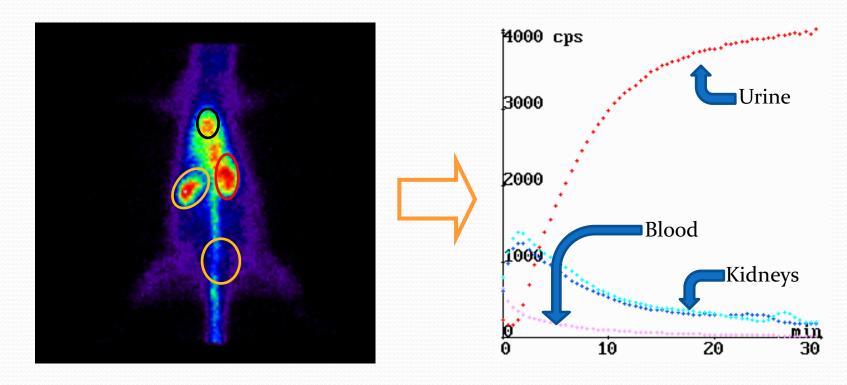

The tracer is nothing like any other molecule in our organism


Mechanisms for radiotracer localization.


Non specific mechanisms (no receptors mediated):

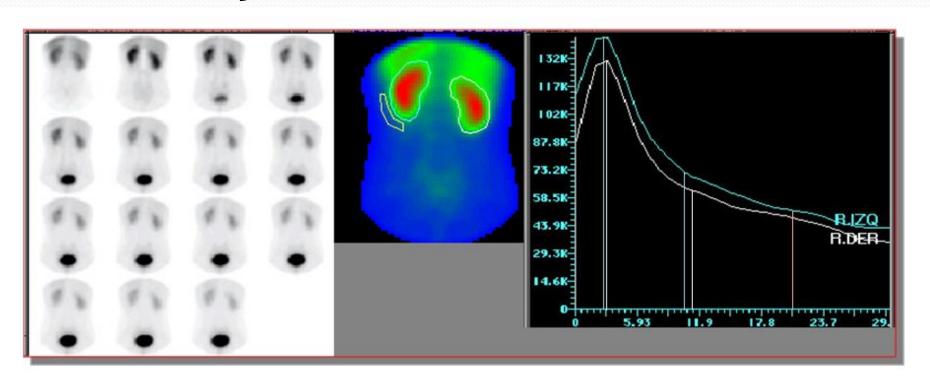

- Capilar blockage (radiocolloids)
- Fagocytosis (radiocolloids)
- Cellular recycling
- Compartmental localization
- Simple difusion

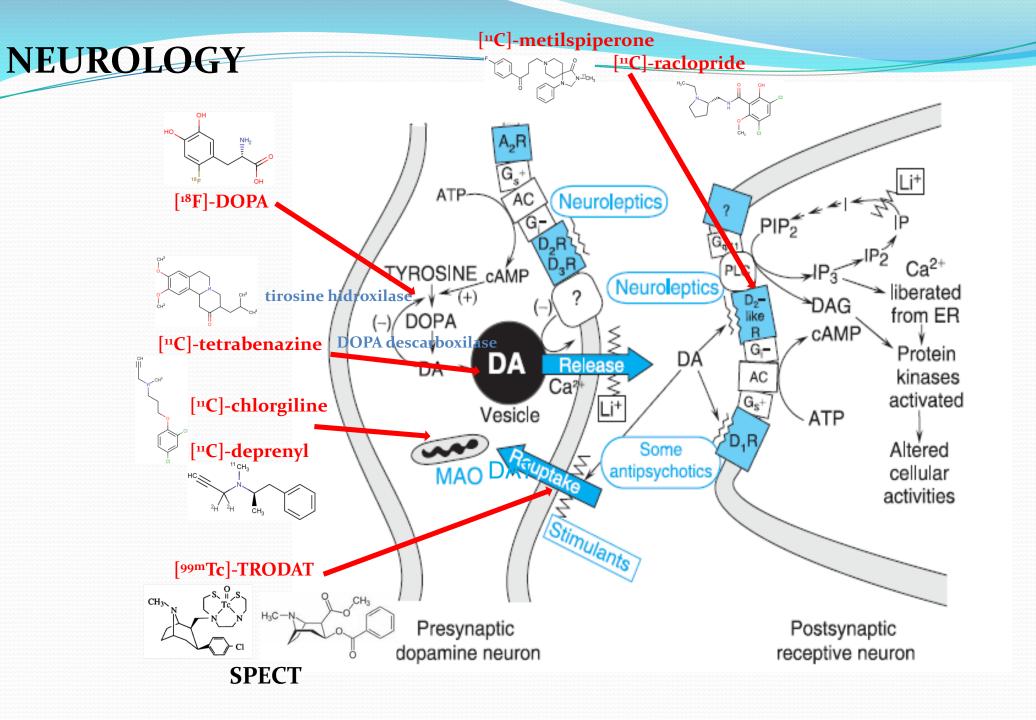
- Methabolic trapping
- Active transport
- Binding to membrane receptors
- Antigen antibody



Radiopharmaceuticals applications: DIAGNOSTIC

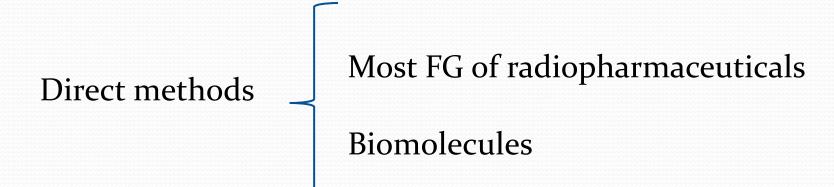
S TC N

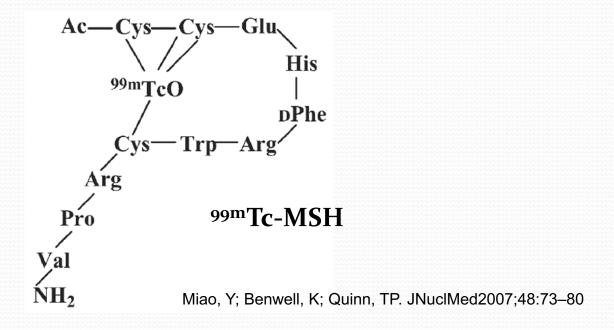

99mTc-MAG3 Renal Scan in a rat



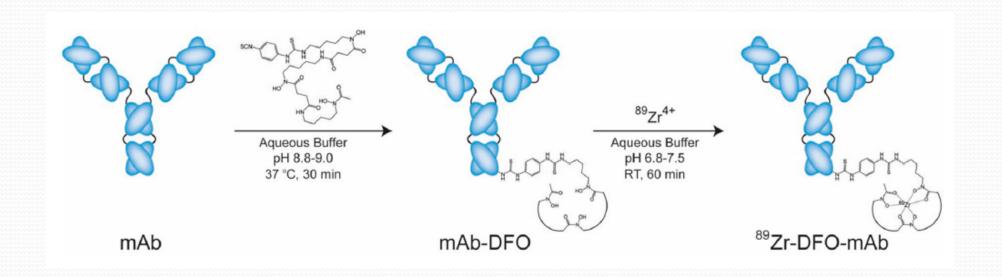
Radiopharmaceuticals applications: DIAGNOSTIC

99mTc-MAG3 Renal Scan in humans





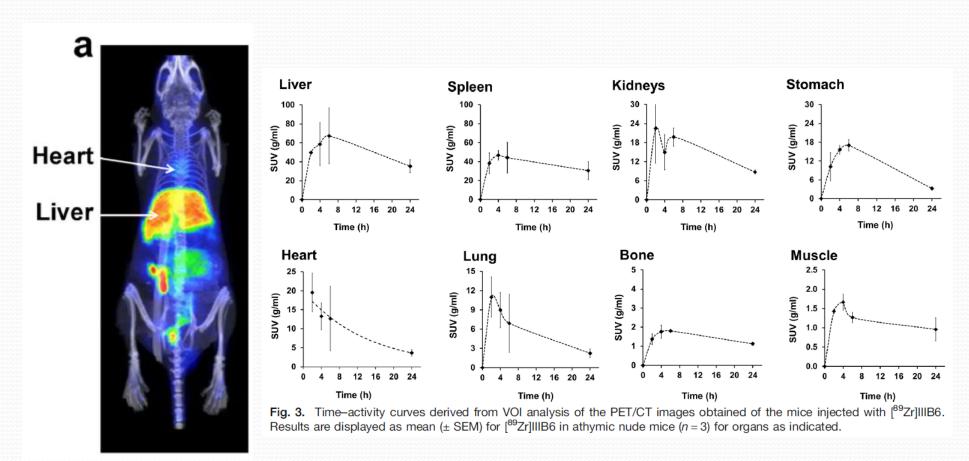
Radiolabeling procedures:



Radiolabeling procedures:

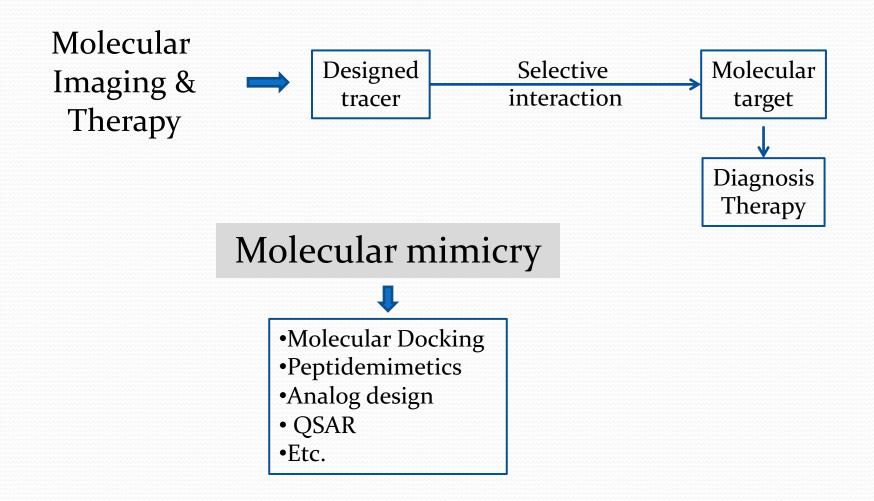
Indirect methods

Most recent metal complexes
Biomolecules



Macrocyclics as BFC agents:

Molecular Imaging of a Zirconium-89 Labeled Antibody Targeting *Plasmodium* falciparum-Infected Human Erythrocytes


CENTIS Cent of histogra NUMAR-2022

Janie Duvenhage,^{1,2} Thomas Ebenhan,^{2,3} Seike Garny,¹ Ignacio Hernández González,⁴ René Leyva Montaña,⁵ Roger Price,^{6,7} Lyn-Marie Birkholtz,¹ Jan Rijn Zeevaart^{2,8} Mol Imaging Biol (2020) 22: 115-123

Modern Radiopharmaceutical design need

Radiopharmaceuticals preparations:

- 1. Industrial radiopharmaceutical production
- 2. Hospital radiopharmacy facilities
- 3. Centralized radiopharmaceutical preparation,

dispensing and distribution

Industrial radiopharmaceutical production

https://www.temasinergie.com/

Expensive facilities:

- Specialized equipments and barrier systems
- •Clean rooms for sterile parenterals
- Radiological security and wastes management system
- Trained and experienced staff

Good Manufacturing Practices (GMP)

Ready to use radiopharmaceuticals Lyophilized cold kits

Industrial radiopharmaceutical production and Good Manufacturing Practices (GMP)

Industrial radiopharmaceutical production and Good Manufacturing Practices (GMP)

R+D, marketing and distribution

- Knowledge about most demanded diagnostic an therapeutic procedure
- Specialized packaging
- Specialized and licensed transportation system

Quality assurance program

Sanitary approval by regulatory authority

Licenced Radiological Security System

Methods of radiopharmaceuticals preparations:

- Hospital radiopharmacy facilities
- Centralized radiopharmaceutical preparation, dispensing and

distribution.

Syringes dispenser

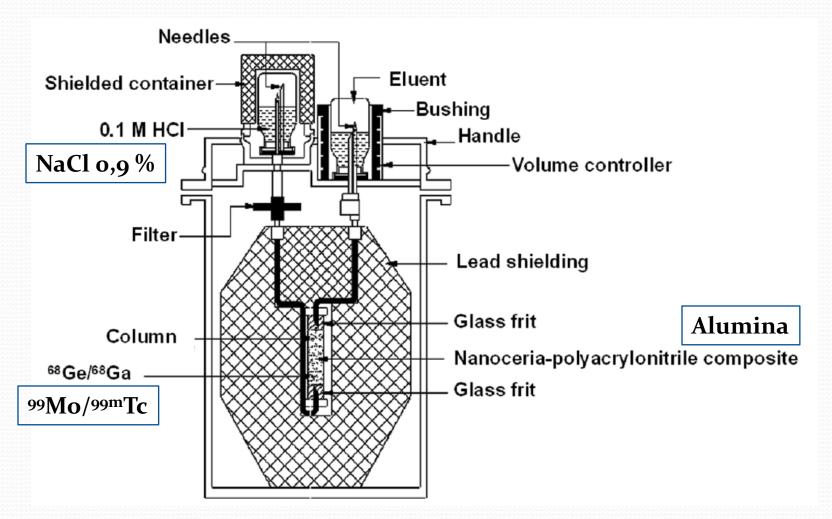
Automatic labeling systems

- Based mainly on radionuclide generator
- Require well trained and experienced staff
- Radiological security system and waste management

GLP Quality assurance

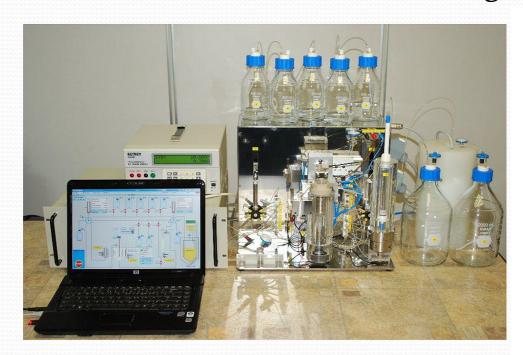
Sanitary approval by regulatory authority Licenced Radiological Security System

Sources of ranionuclides for radiopharmaceuticals preparation

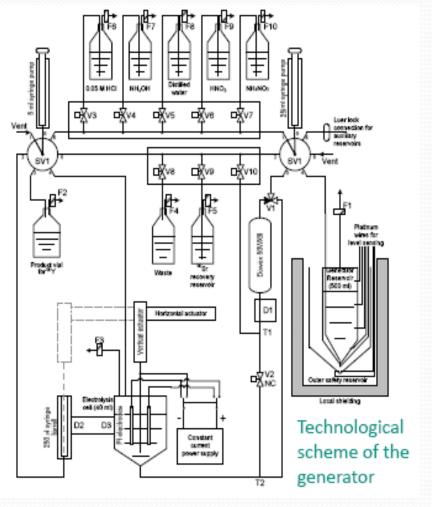

- 1. Reactors
- 2. Cyclotrons
- 3. Generators

Advantages of radionuclide generators:

- 1. Obtaining carrier free short life radionuclides
- 2. Optimization of *in situ* radiolabeling by mean of cold kits
- 3. Increasing radiopharmaceutical availability
- 4. Good imaging quality and easy theranostic application



Basic principle of radionuclide generator



9°Sr/9°Y electrochemical generator.

Kamadhenu

Knapp, F.F Jr; **Pillai, M. R. A**; Osso, J.A Jr; Dash, A. J Radioanal Nucl Chem (2014) 302:1053–1068

TABLE 7.2. TYPICAL PERFORMANCE OF THE ELECTROCHEMICAL 90 Sr/ 90 Y GENERATOR

Sr-90 in the electrolyte (GBq/mCi)	Y-90 growth period (d)	Expected Y-90 activity (GBq/mCi)	Y-90 recovered (GBq/mCi)	Y-90 recovered (%)
1.85/50	15	1.810/48.93	1.6835/45.5	92.9
1.848/49.95	9	1.668/45.09	1.5725/42.5	94.3
1.847/49.92	33	1.8426/49.80	1.6872/45.6	91.6
1.843/49.81	16	1.812/48.97	1.691/45.7	93.4
1.841/49.76	13	1.7764/48.01	1.6872/45.6	95.1
1.8396/49.72	20	1.8267/49.37	1.706/46.1	93.3

Radiopharmaceutical preparation at CENTIS:

Radiopharmaceutical preparation at CENTIS: New facilities in commissioning stage

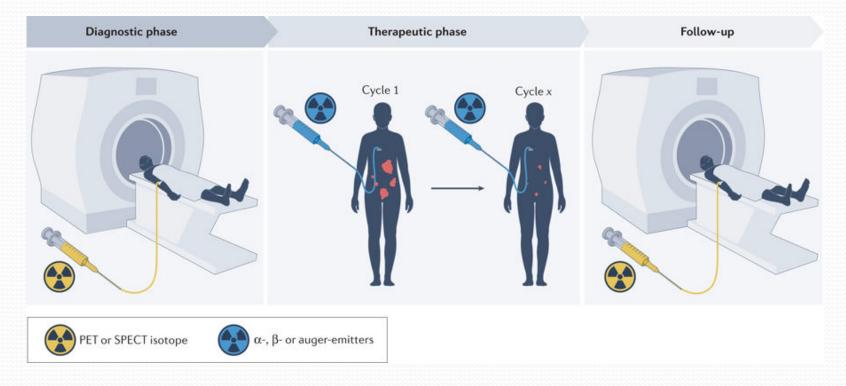
Main entrance

Corridors and rooms

GMP hot cells

Radiopharmaceutical preparation at CENTIS: New facilities in commissioning stage

99Mo/99mTc Generator GMP production facility


Recent trends in radiopharmaceutical research and development

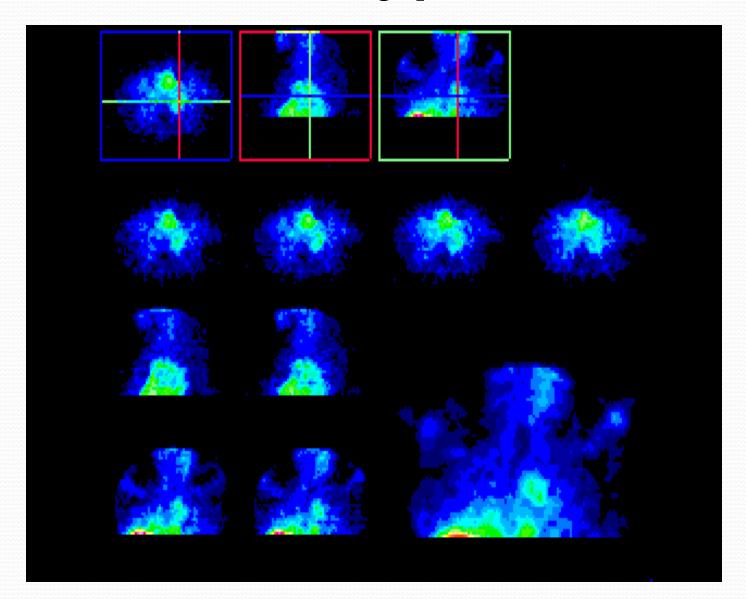
RADIOTHERANOSTIC

What radiotheranostic is?


..."radiotheranostic approaches involve the administration of radiolabelled diagnostic forms of targeted compounds (using isotopes such as ^{99m}Tc, ¹⁸F and ⁶⁸Ga), enabling expression of the therapeutic target to be visualized in vivo with a companion imaging method before switching to the radiolabelled therapeutic counterpart."

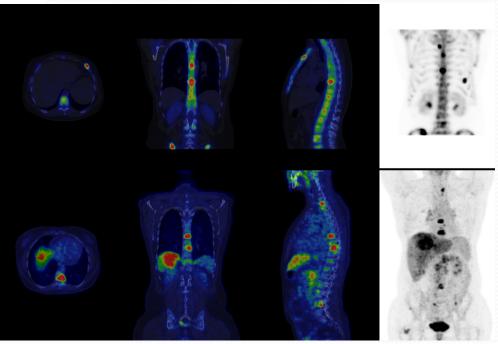
Bodei, L; Herrmann, K; Schöder, H; et al. Nat Rev Clin Oncol. 2022; 19(8): 534-550.

How theranostics work?


Examples of radionuclides for theranostic applications

Isotope	Procedure	T _{1/2}	Production method	Labeling and pair isotopes
¹⁸ F	PET	110 min	Cyclotron: ¹⁸ O(p,n) ¹⁸ F	Synthesis
⁶⁸ Ga	PET	67.7 min	Cyclotron: ⁶⁸ Zn(p,n) ⁶⁸ Ga Generator: ⁶⁸ Ge/ ⁶⁸ Ga	BFC Chelation/177Lu
¹⁷⁷ Lu	β- therapy/SPECT	6.6 d	Reactor: ${}^{176}\text{Lu}(n,\gamma){}^{177}\text{Lu}$ Reactor: ${}^{176}\text{Yb}(n,\gamma){}^{177}\text{Yb} \rightarrow$	BFC Chelation/68Ga
⁶⁴ Cu	PET/β-therapy	12.7 h	Cyclotron: ⁶⁴ Ni(p,n) ⁶⁴ Cu Reactor: ⁶⁴ Zn(n,p) ⁶⁴ Cu	BFC Chelation/ ⁶⁷ Cu, ⁶⁴ Cu
⁶⁷ Cu	SPECT/Auger therapy	3.3 h	Cyclotron: ⁶⁸ Zn(p,2n) ⁶⁷ Ga Reactor: ⁶⁷ Zn(n,p) ⁶⁷ Cu	BFC Chelation/64Cu, 67Cu
⁸⁹ Zr	PET	78.4 h	Cyclotron: 89Y(p,n)89Zr	BFC Chelation, biomolecules like MAb, ¹³¹ I
^{99m} Tc	SPECT	6.02 h	Generator: 99Mo/99mTc	BFC Chelation or direct labeling/153Sm, ¹⁸⁶ Re, ¹⁸⁸ Re
¹⁵³ Sm	β- therapy/SPECT	46.3 h	Reactor: 152 Sm $(n,\gamma)^{153}$ Sm	Chelation, bone seeking agents
86 Y	PET	14.7 h	Cyclotron: 86Sr(p,n)86Y	BFC Chelation/90Y
90 Y	β- therapy		Generator 90Sr/90Y	BFC Chelation
124 I	PET	4.2 d	Cyclotron: 124Te(p,n)124I	Direct labeling of biomolecules/131I
123	SPECT/Auger therapy	13.2 h	Cyclotron: 124Xe(p,2n)123I	Direct labeling of biomolecules/131I
131 I	β- therapy/SPECT	8.03 d	Reactor: 130 Te $(n,\gamma)^{131}$ I	Direct labeling of biomolecules/131I

99mTc-nimotuzumab in lung epidermoid carcinoma

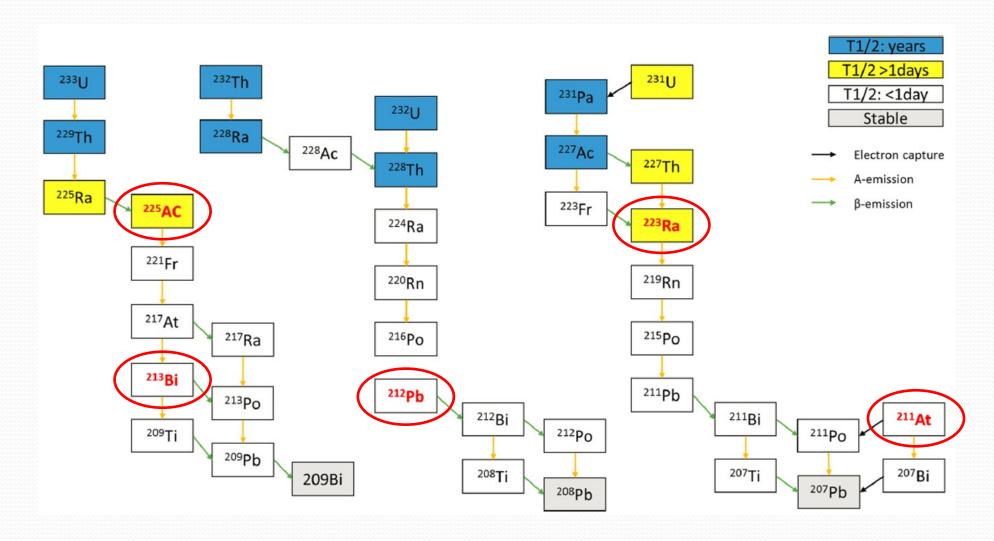


Clinical Imaging at Biomedical Services Division CENTIS

AnyScan Mediso TRIO imaging system SPECT/PET/CT

Chalenges of radiotheranostic procedures:

- 1. Radionuclides availability
- 2. Ligands availability and radiolabeling, GMP & GLP procedures
- 3. Validated medical protocols for application and evaluation
- 4. Dosimetric evaluation



Challenges in radiotherapy

Alfa emitters

Q-emitters

Clinical trials therapies involving an α -emitter

Leukemia

Lymphoma,

Melanoma

Brain tumors

Neuroendocrine tumors

Ovarian carcinomas

Peritoneal carcinomatosis

Prostate cancer

Breast cancers

Administration and delivery of α -emitter

Administration Systemic Local

Delivery systems

Disolution

Nano structures

liposomes

carbon

Non-clinical research examples

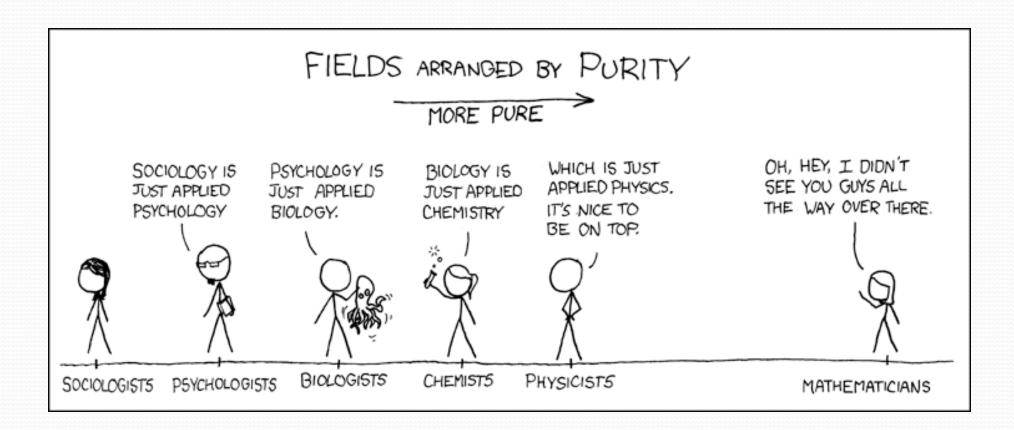
Compound	Target	Animal used	Main results	
²²⁵ Ac conjugated with 2D11; a Blood group A-reactive mouse IgG	CA431: a human epidermoid tumor cell line	In vitro study	Specific cell-killing was achieved	
²²⁵ Ac HEHA-Mab 201B	EMT-6 mammary carcinoma	BALB/c mice	A dose that avoid acute and lethal radiotoxicity while curing tumor was not found	
²²⁵ Ac-DOTA-trastuzumab	SKOV3: a human ovarian carcinoma cell line	Female athymic nude mice	Median survival time was improved compared to other groups $(P \le 0.043)$	
²²⁵ Ac-ratHER-2/neu MAb	HER-2/neu-positive metastatic breast cancer	neu-N transgenic mice expressing rat HER-2/neu	Complete eradication of breast cancer lung metastases in 67% of the mice Long term survival increase up to one year	
²²⁵ Ac-E4G10	LNCaP: a prostate tumor cell line	Male BALB/c and athymic nude mice (NCr nu/nu)	Decreased tumor growth Increased chemotherapy efficacy	
²²⁵ Ac-HuM195	Non applicable	Male cynomolgus monkeys	High dose induce renal toxicity and anemia Potential safe starting dose for clinical trials: 28 kBq/kg	
AR42J cells: rat acinar pancreatic cell line with high expression levels of somatostatin receptor subtype 2		BALB/c mice	No toxicities and decreased tumor growth at doses between 12 and 20 kBq/kg	

Makvandi, M; Dupis, E; Engle, JW; et al. Targeted Oncology (2018) 13:189–203

Clinical research examples

Targeted alpha therapy	Target	Disease	Phase	No. of patients	Treatment plan	Route of administration	Main Toxicity	Activity
Ac-DOTA-SCN (Lintuzumab)	CD-33 antigen	Acute myeloid leukemia	First-in-human	18	Single dose: 0.5, 1, 2, 3, and 4 μCi/kg. Total dose: 23–390 μCi	IV	Myelosuppression lasting >35 days. Death due to sepsis. Grade 2/3 liver function abnormality.	Bone marrow blast reduction >33% in 67% evaluable patients at 4 weeks
²²⁵ Ac-lintuzumab + LDAC	CD-33 antigen	Acute myeloid leukemia	Phase I/II	12	²²⁵ Ac-lintuzumab: 0.5, 1, 1.5 μCi/kg/fraction. LDAC: 20 mg BID	IV	Grade 3/4: febrile neutropenia, thrombocytope- nia, neutropenia, Pneumonia	Bone marrow blast reduction of 68% in 75% evaluable patients after 1 cycle
²²⁵ Ac-PSMA-617	PSMA	mCRPC	Phase I	2	Activity: 100 kBq/kg of body weight.	IV	Xerostomia	PSA decrease below measurable levels and CR per PET/CT
²¹¹ At-ch81C6	Tenascin	Recurrent malignant brain tumors	First-in-human	18	Doses from 71 to 347 MBq	Regional	Grade 4 aplastic anemia. Grade 4 seizures	Not reported (phase I)

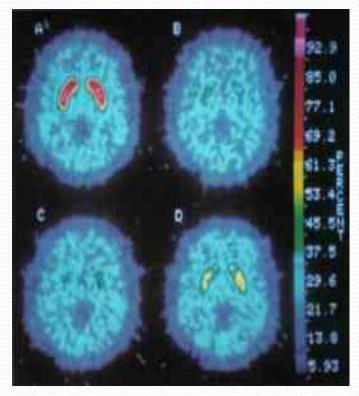
Makvandi, M; Dupis, E; Engle, JW; et al. Targeted Oncology (2018) 13:189–203



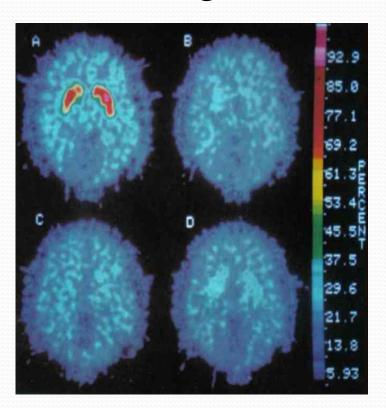
Adverse effects of **α**-emitters

Unbound radionuclide	Tissue distribution	Related adverse event
²²⁵ Ac	Liver	Transient liver function abnormality
²¹¹ At	Thyroid	Not reported (Phase I)
²²¹ Bi	Kidneys	Kidney toxicity
²¹² Pb	Small intestine	Abdominal pain
²²³ Ra	Intestinal wall	Nausea, diarrhea, vomiting, and peripheral edema

Need of integrative science



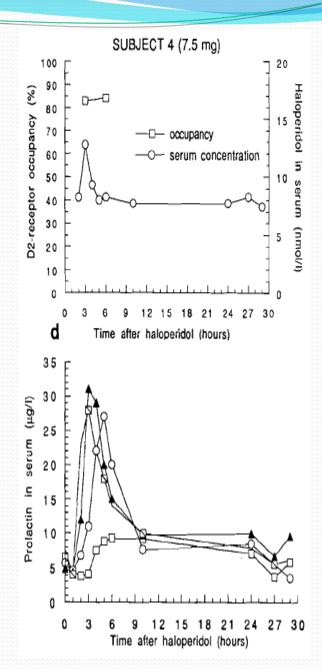
Nuclear Medicine and allied techniques in clinical and non-clinical research


IMAGING

Nuclear imaging techniques in other drugs research

haloperidol 4 mg

haloperidol 7.5 mg


[11C]-raclopride. A: before haloperidol, B: 3h, C: 6h, D: 27h

Pharmacokinetic/pharmacodynamic model.

$$C_b(t) = C_{put}(t) - C_f(t)$$

$$R = \frac{\int_{21}^{31} C_b(t) / \int_{21}^{31} C_f(t)}{\int_{21}^{31} C_f(t)}$$

Imaging in non-clinical research

Imagine seeing a specific molecular target in a live animal, following a drug's distribution in the same animal and quantitating the drug's direct effect on the target, all in a matter of minutes .. seemed utopian a few years ago, enabling technologies, such as novel imaging modalities and molecular probes... should allow these questions to be addressed routinely in the not-too-distant future.

Advantages of non-clinical imaging

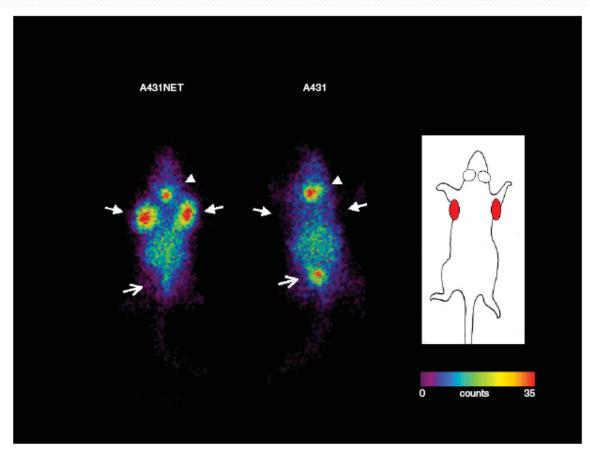
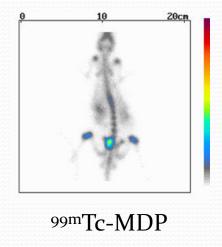
Instrumentation
Tracers or molecular probes

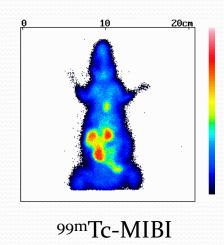
Non clinical

Clinical

New imaging methods New tracers

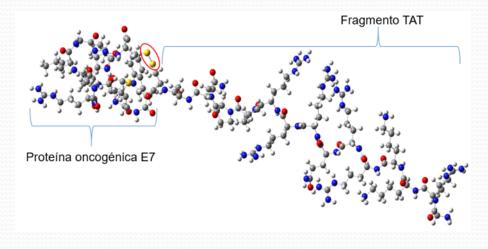
Reporter gen technique

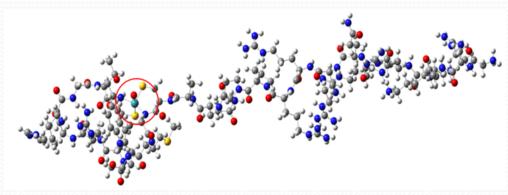



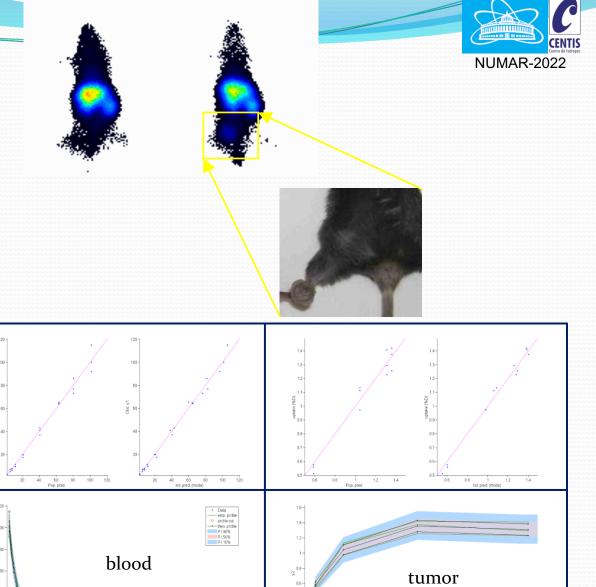

Figure 3. Gamma camera images of two nude mice with A431 and A431NET xenografts, respectively. The two A431NET tumors show intense tracer accumulation 24 h after [\$^{123}I]MIBG\$ injection (closed arrows). In contrast, the A431 parental tumors are not visible in the gamma camera images. Focal [\$^{123}I]MIBG\$ uptake is also seen in the thyroid (arrowhead) due to partial deiodination of [\$^{123}I]MIBG\$ and in the bladder due to renal excretion of the tracer (open arrow)

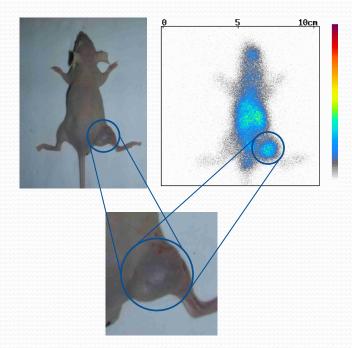
Applications at CENTIS

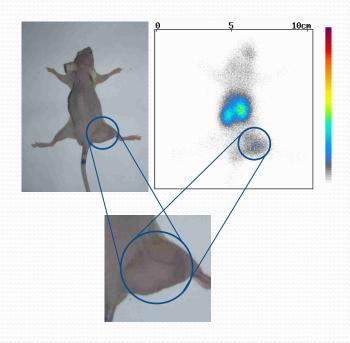
- ✓ Gammagraphic studies for biological quality control of radiopharmaceuticals.
- ✓ Pharmacokinetic studies of new drugs.


Non Clinical research facilities:









^{99m}Tc labeled monoclonal antibodies Hybridoma based mAb vs transgenic

[99mTc]-nimotuzumab

[99mTc]-phR3 (transgenic)

Advantages of in vivo non clinical imaging

- 1. Quality of information and quantification
- 2. Non invasive, multiple measurements per individuo
- 3. Better statistical analysis
- 4. Posible measurement of disease related parameters, early end point definition
- 5. Experimental design optimization

"The greatest scientific achievements have always been the most humane and the most aesthetically attractive, conveying that sense of beauty and elegance which is the essence of science as its most success"

Russel & Burch
The Principles of Human Experimental Technique.
London, UK. (1959)

Our directions:

Increase research activities in the field of radiobiological investigation at JINR related with novel radiotherapeutical approaches, based on the great experience in the field and facilities in the LRB.

You are all very wellcome to joint us as well

Time for questions

"putting science into everyday speech; this is a good that very few do...

... the science is in knowing the opportunity and make a good use of it..."

José Martí (Patria, 1893)

Thank you