RADIATION DETECTORS AND MEDICAL IMAGING

Alexey Zhemchugov JINR E-mail: zhemchugov@jinr.ru

February 26, 2024

Medical imaging

WHO definition:

Medical imaging encompasses different imaging modalities and processes to image the human body for diagnostic and treatment purposes

In this lecture we will mostly talk about X-ray and nuclear imaging (ultrasound and MRI are not covered)

Electromagnetic spectrum

$$E = \hbar \omega = h \nu = rac{hc}{\lambda}$$

1 eV = 1.6021766208(98)×10⁻¹⁹ Joule

1 keV	~	1 nm	Can rather 'feel' stome
100 keV	~	0.01 nm	can ratiner reer atoms,
1 MeV	~	0.001 nm	not molecules!

Effect of detector resolution

Effect of photon energy (= wavelength)

Sources of energetic EM waves

X-rays

γ rays

The same physical essence Different origin and slightly different energies

Detectors

Photon interaction with matter

Probability of interaction with matter

PDG2012

Probability of interaction with matter

PDG2012

Probability of interaction with matter

PDG2012

Algorithm of a photon detection

- Photon interacts with the material of the detector and produces electron or electron-positron pair
- Electrons and positrons lose their energy, which is deposited and converted to
 - a darkening of a photofilm or a flash in a fluorescent screen
 - to light (scintillators)
 - to electric charge by ionization (gaseous and solid state detectors)
- Light is collected and registered by a very sensitive photodetector (PMT or SiPM or CCD) producing an electric signal
- Electric charge moves (if electric field is applied) and induces a current pulse in a readout chain

Key propetries of an imaging detector

- Efficiency (determines the patient's radiation dose)
- Resolution
 - spatial
 - (energy)
 - (time)
- Response time
- Noise and uniformity

Scintillator detector

PMTs are often replaced by a photodiodes

F. Reiser, Maximilian & Becker, C.R. & Nikolaou, Konstantin & Glazer, Gary. (2009). Multislice CT. 10.1007/978-3-540-33125-4.

Nal, Csl, BGO, CdWO₄, Gd₂O₂S (or UFC)

Properties of scintillator detectors

- Compact and stable
- Long afterglow
- High X-ray detection efficiency (~90%)
- Difficult to obtain spatial resolution < 1 mm

Thin Scintillator:

- high resolution
- low sensitivity

Thick Scintillator:

- low resolution
- high sensitivity

Gaseous detector

Properties of gaseous detectors

- Excellent stability and uniformity
- Fast response time, no afterglow
- Low X-ray detection efficiency (<50% even with high-Z gas like Xenon and high pressure)
- Difficult to make 2D detectors

Semiconductor detector

Example: a-Se flat panel

Properties of semiconductor detectors

- X-ray detection efficiency is rather low (even for high-Z semiconductors like CdTe, CZT, GaAs, Se)
- Excellent spatial resolution
- Difficult to make large area detectors

Structural imaging vs. Functional imaging

• X-rays allow to obtain images of interior structures of human body, invisible otherwise: shape, density

\rightarrow structural (or anatomic) imaging

- good spatial resolution
- functional change occurs earlier than structural changes
- One can deliver radioactive gamma-sources inside the body and use them as labels to trace their distribution \rightarrow functional imaging
 - functional change occurs earlier than structural changes
 - only functional change occurs in some pathologies
 - lacking spatial details

Functional imaging

- Metabolism
- Fluid diffusion
- Blood perfusion

- Cancer diagnostics and metastase location
- Myocardial perfusion
- Stroke assessment

2D imaging

Structural

- Radiography Mammography
- Fluoroscopy Angiography

Functional

Scintigraphy

Tomography: $2D \rightarrow 3D$

- 2D imaging is simple and quick, but ...
- Two key problems of 2D imaging:
 - superposition of structure shadows
 - image contrast is determined by the full body thickness

Solution: tomography

 $I = I_0 \exp(-\mu x)$

31

 $I = I_0 \exp(-\mu x)$

a — 2D image

b — 3D CT slice

3D imaging

Structural	Functional		
X-ray Computed Tomography	<text></text>	<text></text>	

Xray-CT: transmission tomography

Reconstructing slice from projections

A. Cormack and G.Hounsfield

Figure 2. The first clinical scan: Atkinson Morley's Hospital, October 1971.

- Pencil beam
- Single detector
- Translate-rotate acquisition
- Very slow (minutes per slice)

- Multiple detectors (up to 1000)
- Multiple detector rows (up to 64, multislice CT)
- No translation
- Fast (~0.5 s per slice)

Fourth generation

- Multiple detectors
- Only X-ray source rotates
- Fast (~0.5 s per slice)

Veröffentlichung nur unter Nennung des Copyrights Any publication must include a copyright notice

Copyright: Qilu Hospital, Shandong University, Jinan, China

Courtesy of Siemens Healthineers

What if we look at the photon energy?

An example of dual energy CT (Siemens SOMATOM Definition)

SPECT: emission tomography

Reconstructing source position and activity from projections

 $I = I_0 \exp(-\mu x)$

It is necessary to know the photon direction

SPECT: Single Photon Emission Computed Tomography

Gamma camera

H. Anger, 1958

Background is higher, sensitivity is lower Energy resolution helps tp clean up the picture

SPECT detectors

- Scintillator detectors (NaI(Tl) is the most widespread so far — optimal for Tc-99m, large crystals)
- Good energy resolution in the range of 30-250 keV is necessary (suppress background, dual-isotope studies)
- Semiconductor detectors are promising due to their energy and spatial resolution
 - detection efficiency is a challenge
 - spatial resolution (~0.5 1 mm) is limited by collimators

PET

PET detector features

- No collimator is needed
- Optimized to detect 511 keV gamma (higher energy) heavy scintillators (BGO, LSO) => spatial resolution
- Energy resolution ~10%

• Time resolution < 0.5 ns - TOF-PET:

TOF-PET

SPECT vs. PET

SPECT

- modest infrastructure requirements
- larger number of available radiotracers
- less sensitive than PET
- spatial resolution is rather low (few mm)

PET

- the most sensitive functional imaging method so far
- expensive (cyclotron)
- spatial resolution is comparable to SPECT

Combined structural and functional imaging: SPECT/CT

Combined structural and functional imaging: PET/CT

Future prospects & challenges

- *C*T
- Higher spatial resolution, single photon counting, spectral CT
- SPECT(/CT)
 - whole-body SPECT, higher spatial resolution, new radionuclides
- PET(/CT)
 - Higher time resolution (up to 10 ps), long axial FOV (up to 1-2 m)
- AI for all applications
 - Detector calibration, mage preprocessing, reconstruction, image postprocessing, low statistics signals...
 - Generalization problem and the bias control
- Computing for all applications
 - amount of data grows quadratically with the spatial resolution ...
- Multiple modality (PET/CT, SPECT/CT, PET/SPECT/CT
- Cost and economy

Summary

- Xray-CT, SPECT and PET are very powerful methods for medical imaging nowadays
- Scintillator detector remains a main working horse for photon detection. Prospects of semiconductors are still rather vague
- Constant hardware innovations:
 - finer spatial resolution (= more details), larger FOV
 - finer energy resolution for SPECT and PET, spectral CT
 - precise timing for TOF-PET
 - higher sensitivity (=lower dose, early diagnosis) lower noise
 - speed for X-ray CT (very important for cardiac CT)
- Significant challenges arise in data processing: AI and high performance computing