Lecture 5-1

Radiation Biology and Astrobiology

Aleksandr Bugai Laboratory of Radiation Biology, JINR

International School on Nuclear Methods and Applied Research in Environmental, Material and Life Sciences (NUMAR-2024)

JINR Research Infrastructure

JINR

Flerovium

MSC230 cyclotron protons 230 MeV

Infrastructure for cellular and animal research

РСК 🚟

PCK 🛞

PCK 🛞

FLNPIBR-2, IREN neutrons

JINR Life Science Research

computing and Mathematics

Main types of ionizing radiations

Nuclear and Radiation Technologies

- Fundamental research
- Evaluation of radiation risks

Nuclear Waste

• Application of radiations in medicine

Diagnostics and Radiation therapy

Space Exploration

Space radiobiology

New concept of radiation risk for deep space flights: Damage to the central nervous system (CNS)

> Grygoriev, Krasavin, Ostrovskii, Bulletin of RAS 2017

% Risk of cancer death

JINR facilities for space radiobiology

Station of Investigation of Medico-Biological Objects (SIMBO) ¹²C⁶⁺, ⁴⁰Ar¹⁸⁺, ⁵⁶Fe²⁶⁺, ⁸⁴Kr³⁶⁺ Ion energy 400-1100 MeV/n Flux density 10³-10⁵ particles/(cm².s) Beam intensity, 10⁶-3×10⁹ particles per pulse

JINR facilities for space radiobiology

New type of accelerator-based cosmic radiation field simulator

Comparison of simulator and space radiation charge spectra

Clinical radiation biology

I. Conformal dose delivery

Minimize damage to healthy tissue

II. Biological efficiency of radiation

Maximize biological damage in tumor cells

Ionizing radiations used in radiation medicine

JINR facilities for radiation medicine

The first proton beam in the USSR with the necessary parameters for therapy was formed in 1967 at JINR

During the operation of the medical proton beam in Dubna, more than 1,300 patients were treated

JINR has developed a project for next generation superconducting compact proton cyclotron MSC-230 with parameters superior to foreign analogues. The production of a prototype is carried out jointly with NIIEFA named after. D.V. Efremova (Rosatom State Corporation).

JINR facilities for radiation medicine

Preclinical research

SARRP (Small Animal Radiation Research Platform)

SARRP imitates modern X-ray radiation therapy systems for animal research

The 360° gantry and motorized stage allow for non-coplanar beam delivery from any angle.

Techniques utilizing planar static beams, parallel opposed beams, continuous arc therapies, multiple isocenter treatments, and nonplanar arcs can all be planned, evaluated, and delivered with SARRP

Experiments on mice irradiation at SARRP

JINR expertise in radiation medicine

A fundamentally new method to increase the efficiency of radiation therapy

Patents No.

DATERT

JINR expertise in radiation medicine

System for targeted alpha-therapy of melanoma

Melanoma tumor cell survival

Relative biological effectiveness of ionizing radiations

The RBE value is determined by two factors - physical and biological.

The biological factor is dependent on the physical one.

DNA damage caused by photon and hadron radiation is qualitatively different

Biological efficiency of ionizing radiations Molecular basis

DNA lesions

Ionization, bond breakage

Radical attack, indirect lesion

Important physical parameter – linear energy transfer (LET)

L = dE / dx

Radiation tye	LET (keV/μm)
⁶⁰ Co γ-rays	0,2
200 MeV protons	0.45
290 MeV/u carbon ions	12.9
600 MeV/u iron ions	168
2,5 MeV α-particles	166
1 MeV electrons	0.25
10 keV electrons	2.3
1 keV electrons	12.3
²³⁵ U neutrons	48

LET of radionuclide decay products

Radionuclide	Туре	Half-life	E _{max} (MeV)	Mean range (mm)	Imageable	
⁹⁰ Y	β	2.7 days	2.3	2.76	No	
131	β, γ	8.0 days	0.81	0.40	Yes	
¹⁷⁷ Lu	β, γ	6.7 days	0.50	0.28	Yes	
¹⁵³ Sm	β, γ	2.0 days	0.80	0.53	Yes	LE1 ~ 0.1-1 KeV/ μ m
¹⁸⁶ Re	β, γ	3.8 days	1.1	0.92	Yes	
¹⁸⁸ Re	β, γ	17.0 h	2.1	2.43	Yes	
⁶⁷ Cu	β, γ	2.6 days	0.57	0.60	Yes	
²²⁵ Ac	α, β	10 days	5.83	0.04-0.10	Yes	
²¹³ Bi	α	45.7 min	5.87	0.04-0.10	Yes	IET 50 200 koV/um
²¹² Bi	α	1.0 h	6.09	0.04–0.10	Yes	LE I ~ $30-200 \text{ KeV}/\mu\text{m}$
²¹¹ At	α	7.2 h	5.87	0.04-0.10	Yes	
²¹² Pb	β	10.6 h	0.57	0.60	Yes	
125	Auger	60.1 days	0.35	0.001-0.020	No	
123	Auger	13.2 h	0.16	0.001–0.020	Yes	LET ~ 5-25 keV/µm
⁶⁷ Ga	Auger, β, γ	3.3 days	0.18	0.001-0.020	Yes	

Biological efficiency of ionizing radiations Amount of DNA damage

Computer simulations

- 1) Base damage BD
- 2) Single strand breaks SSB
- 3) Clustered SSB
- 4) Double strand breaks DSB
- 5) Clustered DSB

Expeiments (DSB)

- Frankenberg 1999
- * Belli 2001
- Belli 2006
- Bulanova 2019

Calculations (DSB)

--★--- Nikjoo 2001 --\$--- Friedland 2011 --Δ--- Rosales 2018

Measurement of DNA lesions 1. Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) is a technique used for the separation of DNA fragments by applying to a gel matrix an electric field that periodically changes direction

Measurement of DNA lesions

Cell culture

Electrophoresis

2. Comet assay (single cell gel electrophoresis assay)

Fluorescent staining

Cells embedded in agarose on a microscope slide are lysed with detergent and high salt to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in structures resembling comets, observed by fluorescence microscopy;

Encapsulation

Cell lysis

Measurement of DNA lesions 3. Immunofluorescent microscopy

Irradiation

Fixation of cells at different times post-irradiation (PI) **Visualisation of** induced DSBs (yH2AX/53BP1 foci) Acquisition of images **3D** analysis of induced yH2AX/53BP1 foci - Acquiarium

DNA damage complexity. Clustered DNA double strand breaks

γ-rays of ⁶⁰Co protons ¹⁵N-ions *P=0,001 120 120 -120 110 110 110-100 -100 -90 90 80 -80 70 70 60 60 50 -40 -30 -50 50 40 -40 30-30 20 -20 10 10 10 24 24 Control Control 4 4 Time after irradiation, h

Repair of DSBs

Complexity level of clustered DSBs at different times

radiation-induced foci (RIF) in a track of nitrogen ions traversing neuron cell

γH2AX foci cluster

¹⁵N-ions 30 25 9 10 11 12 - 6 78

24

Control

Number of foci per cluster

DNA damage complexity. Clustered DNA double strand breaks

DNA damage in the rat hippocampus cells 1 hour after exposure to ⁷⁸Kr ion beam

60

A

Ions with similar LET (~130 keV/mkm) generate foci clusters of different complexity

DNA repair. Pathways of DNA DSB reparation

modified from Danforth et al(2022) Front. Cell Dev. Biol. 10:910440.

Research on DNA repair

¹¹B ions

Radiosensitivity and DNA repair

Effect of radiomodifier drugs on DNA damage

Melanoma B16

Glioblastoma U87

E. A. Krasavin et al // Phys. Part. Nucl. Lett. (2019) 16: 153 R. A. Kozhina et al // Phys. Part. Nucl. Lett. (2022) 19: 590

Radiation Cytogenetics

Mutagenic effects radiations

Radiation Cytogenetics

Types of chromosome aberrations

Fate of stable and unstable aberrations

Multicolor fluorescence in situ hybridization (mFISH)

 •5 types of probe DNA (≈150 - 400 bp long) labeled with 5 different fluorochromes FITC
SpO TR Cy5 DEAC

•Specific binding to chromosomes (1 - 3)differently labeled DNA probes bind to each chromosome $\Rightarrow 25$ fluorochrome combinations)

- •DAPI-counterstaining
- •Images are captured at fluorescence microscope using a filter set

 resolution: ≈ 2,6 Mbp, depending on fluorochrome composition involved and hybridization quality

Probes and software of MetaSystems, Germany

mFISH karyogram

RBE evaluation by mFISH

Cytogenetic risk evaluation: Prognosis of long-term consequences (persistence of stable heritable CA in surviving cells)

Increase of % of aberrant cells during RIT (arrows mark I-IV ¹³¹ I courses)

Frequency of stable aberrant cells may serve as a prognostic marker of leukemogenesis

Set of equipment for the study of behavioral reactions and functional disorders of the central nervous system of animals

Behavior test systems

- Open field
- T maze
- Morris water maze
- Barnes maze

Electrophysiology studies

Behavioral analysis

<u>3 min</u>	Grooming	Sectors crossings	Center entrance	Stand ups	Hole dipping	Freezing	Emotional status	Orientation-exploratory status
Control	8		7		5	•		
Irradiated	5	4	6	3	4	0		
<u>6 min</u>								
<u>control</u>	5	1	4			1		
Irradiated	2	5	4	9	7	1		

Autopsy of laboratory rodents

Histological methods

Histological analysis of brain tissue

Comparative Analysis of Behavioral Reactions and Morphological Changes in the Rat Brain after Irradiation

Dose: 1 Gy

LET: 0.2 keV/µm (gamma ray) 0.5 keV/µm (170 MeV protons) 1 keV/µm (70 MeV protons)

Behavioral reactions:

- impaired short-term memory
- decrease in overall motor activity
- decrease in exploratory behavior **Morphological changes in the brain:**
- early amyloidosis
- autolysis of the ependymal layer
- neuronal hypertrophy
- increased dystrophic changes

Amyloid plaques in the forebrain of rats (marked with white arrows)

The neurodegeneration increases with LET of radiation

Evaluation of radiation risks for deep space missions

The effect of 1 Gy 500 MeV/u ¹²C particle radiation exposure on rats Behavior and emotional status

Open field test

The effect of 1 Gy 500 MeV/u¹²C particle radiation exposure on rats Morphological changes in Purkinje cells in the cerebellar cortex 90 days after irradiation

Evaluation of radiation risks for deep space missions Unique experiments on primates at LRB JINR

Automated computer system for the simulation of operator activity during the flight

RAS Institute of Biomedical Problems, RAS Institute of Medical Primatology, RAS Institute of Higher Nervous Activity and Neurophysiology, Moscow State University

The monkeys were preliminarily trained to solve logical problems on a computer. The effect of exposure to 1 Gy of carbon ions with energy 500 MeV/u consisted in a significant suppression of the learning ability of monkeys. In experiments with gamma-rays and protons with energy 170 MeV at the same dose 1 Gy similar effect was not observed.

Long-term cytogenetic and behavioral disorders in monkeys after brain irradiation with accelerated heavy ions

The level of chromosomal aberrations in peripheral blood lymphocytes of monkeys subjected to local action of accelerated krypton ions with an energy of 2.6 GeV/nucleon at a dose of 3 Gy at different periods of observation. In the long term after irradiation of *certain areas of the brain of monkeys* (the hippocampus), most of the irradiated monkeys developed stable deviations from the standard behavior of animals which **persisted for 5 years** of the study.

Astrobiology

Nuclear planetology instruments and search of water In cooperation with the FLNP and the Space Research Institute (Moscow), the LRB has been participating in the planetary surface research program for more than 15 years in accordance with the Implementation Agreements between the Roscosmos, NASA and ESA.

- □ The High Energy Neutron Detector (HEND) aboard NASA's 2001 Mars Odyssey spacecraft to study the elemental composition of the Martian surface and search for water in orbit. The spacecraft was launched in February 2001.
- The Lunar Exploration Neutron Detector (LEND) aboard NASA's Lunar Reconnaissance Orbiter (LRO) to search for water from low orbit. The spacecraft was launched in June 2009 and the mission was very successful;
- Spectrometer of gamma-rays and neutrons (NS-HEND) of the Russian mission "Phobos-Grunt" to study the distribution of elements on the surface of Phobos. The spacecraft was launched in October 2011, but its mission was not completed.
- BTN-M1, BTM-M2 are designed for the BTN-Neutron experiment to study fast and thermal neutrons aboard the service module within the Russian orbital segment of the International Space Station (ISS).
- The Albedo Neutron Dynamics (DAN) instrument with a pulsed neutron generator aboard NASA's Mars Science Laboratory (Curiosity) rover to search for water directly in the Martian earth (Gail Crater). The rover landed on Mars in the fall of 2012.
- The Gamma Ray and Neutron Spectrometer (MGNS), which will be deployed on board the ESA's BepiColombo mission to Mercury in 2015. The main task is the orbital search for water at the poles of Mercury.
- ADRON-LR is designed to measure the local elemental composition of the lunar surface using active neutron and gamma spectrometry. This is a joint Russian-Indian project "Chandrayan-2".
- Luna Globe, ExoMars (with ESA), NORD (with NASA)

Nuclear planetology uses the methods of nuclear physics for study of planet elemental composition from the orbit or from the surface directly. Overwhelming amount of H on the Earth is composed of water. Thus, search of H is search of water!

Main techniques for search of H:

- Neutron radiometry and spectroscopy
- Gamma spectroscopy

planetary ground facility DAN for testing nuclear planetology instruments

Mechanism of gamma rays and neutrons generation within subsurface matter of planet

Search for remains of living organisms (microfossils) in meteorites

The Orgei meteorite is a unique phenomenon in the abundance and diversity of microfossils of prokaryotes and aquatic eukaryotes, including microalgae, protists, and even algae or fungal spores. The microfossils found are indigenous to the meteorite and not terrestrial biocontaminants. The consistency of the theory of panspermia is shown. The capabilities of SEM for the search and analysis of indigenous microfossils in meteorites are demonstrated.

<u>Accelerator experiment</u>: irradiation of formamide in the presence of space matter under the influence of cosmic types of ionizing radiation

Prebiotic chemistry

Irradiation with protons with an energy of 170 MeV in the synthesis of formamide and meteoritic substances revealed precursors of nucleic acids, proteins, and metabolic cycles in appreciable amounts. In the absence of irradiation, prebiotic compounds are not formed.

Acids (µg)

(1) Oxalic acid

(2) Glycolic acid

(3) Malonic acid

(4) Lactic acid(5) Pyruvic acid

(6) Propionic acid

(7) Succinic acid
 (8) 4-oxopentanoic acid

(9) Phthalic acid

(10) Benzen acetic acid

(11) 4-hydroxyphenyl

1,93 0,51

3,23

5,89

0,33 0,18

0,32

0,58

2,45

121,81

Lecture 5-2

Modern Information Technologies in Biology and Medicine

Hierarchy in mathematical modeling

Multiple scale modeling. Example 1

Multiple scale modeling. Example 2

Phenomenological and detailed models

Calculation of elementary events at the cellular and molecular level

- **1. Calculation of DNA damage formation**
- 2. Models of DNA DSB repair
- 3. Cell survival

α = ? β = ?

Monte Carlo simulation codes

General purpose codes

Treatment planning in radiotherapy

Low-energy codes for radiation biophysics

MCNP, EGS, GEANT, FLUKA, PENELOPE, PHITS, SHIELD ...

PEREGRINE, DPM, VMC++, MCV, MMC, ORANGE ...

• Extensions of general purpose codes

MCNP (v6), GEANT4-DNA, PENELOPE/penEasy, PHITS

• Dedicated software

NOREC, PARTRAC, RITTRACKS, TRAX, KURBUC ...

TRIONLappa, Bigildeev et al. (1993)**RADAMOL/TRIOL**Bigildeev and Michalik (1996) @JINR

GEANT4-DNA/neuron Batmun

Batmunkh et al, @LRB JINR

Methodology of simulation on example of Geant4-DNA

Physical Interactions in Geant4-DNA

Geant4-DNA physics processes simulate explicitly all interactions as purely discrete processes and do not use condensed history approximations

One can combine in a single Physics list <u>Geant4 EM Standard Physics</u> processes for electrons, protons, He, C, N, O, Fe and gammas

Geant4 EM Low Energy Physics processes for electrons and photons

Geant4-DNA processes

for e-, p, H, He^{q+}, C, N, O, Fe

Methodology of simulation on examplePhysical eventsof Geant4-DNA

Particle	Interaction '	Model
	ionization ≥ 1МэВ 10 кэВ – 1 МэВ 10 эВ – 10 кэВ	(<i>Med. Phys. 2010</i>) Moller-Bhabha Born Emfietzoglou
e-	excitation 10 кэВ — 1 МэВ 8 эВ — 10 кэВ	(<i>Med. Phys. 2010</i>) Born Emfietzoglou
	elastic scattering 0.025 эB – 1 МэВ	(<i>Rad. Phys. 2009</i>) Champion
¹ H, ⁴ He, ⁷ Li, ⁹ Be, ¹¹ B, ¹² C,	ionization 1-1000 МэВ/нук	(<i>Rev. Phys. 1992)</i> Rudd
¹⁴ N, ¹⁶ O, ²⁸ Si, ⁵⁶ Fe	Multiple scattering	<i>(J. Phys. 2010)</i> Urban

Direct damage $P_{sb} = 1 - e^{-n}; n = (\epsilon/\epsilon_0)^2$ $\epsilon_0 = 8.22 \text{ eV}$

Electron cross sections

Двунитевые разрывы (ДР)

 $P_{DP} = 1 - e^{-(\epsilon/\epsilon_0)^2};$ ϵ – передача энергии (эВ) в ДНК $\epsilon_0 = 8.22$ – энергия разрыва связи

Methodology of simulation on example of Geant4-DNA

Radiolysis

Process	reaction c	oefficient, 10 ¹⁰ M ⁻¹ s ⁻¹
$\mathbf{e_{aq}^-} + \mathbf{e_{aq}^-} + 2\mathbf{H_2O} ightarrow \mathbf{H_2O}$	$_{2} + 2OH^{-}$	0.5
$e^{aq} + H^{ullet} + H_2O ightarrow H_2$	$+ OH^-$	2.65
$e^{aq} + {}^\bullet OH \to OH^-$		2.95
$\mathbf{e}_{\mathbf{aq}}^- + \mathbf{H}_3 \mathbf{O}^+ ightarrow \mathbf{H}^ullet + \mathbf{H}_3$	I ₂ O	2.11
$e^{aq} + H_2O_2 \rightarrow OH^- + $	•ОН	1.41
${}^{\bullet}\mathbf{OH} + {}^{\bullet}\mathbf{OH} \to \mathbf{H}_2\mathbf{O}_2$		0.44
${}^{\bullet}OH + H^{\bullet} \rightarrow H_2O$		1.44
$H^\bullet + H^\bullet \to H_2$		1.2
${ m H}_3{ m O}^+ + { m O}{ m H}^- ightarrow 2{ m H}_2{ m O}$)	14.3

$$\frac{\partial p(r,t)}{\partial t} = \overrightarrow{\nabla} \cdot \left[D \left[\overrightarrow{\nabla} p(r,t) - \beta F(r)(r,t) \right] \right]$$

 $OH + DNA \rightarrow OHDNA$

Methodology of simulation on example of Geant4-DNA

Geometry of sensitive target

nucleoside

chromatine

Chromosome domains

Methodology of simulation on example of Geant4-DNA GEANT4-DNA

Event counting

Counting DNA lesions

Single stand break (SSB)

Complex and clustered damage (size < 10 bp)

SSB*

DSB** DSB*

DSB⁺

DCD++

DSB⁺⁺

DSB⁺⁺⁺⁺

Double strand break (DSB)

Amount of DNA damage

Computer simulations

- 1) Base damage BD
- 2) Single strand breaks SSB
- 3) Clustered SSB
- 4) Double strand breaks DSB
- 5) Clustered DSB

Expeiments (DSB)

- Frankenberg 1999
- * Belli 2001
- Belli 2006
- Bulanova 2019

Calculations (DSB)

--★--- Nikjoo 2001 --\$--- Friedland 2011 --Δ--- Rosales 2018

Complexity of clustered DNA damage

Complexity of clustered DNA damage

Nanoscale, 2018, 10, 1162–1179 /

Principles of DNA repair modeling

1. Reaction scheme
$$X + R \xrightarrow[k_{-}]{k_{+}} Z \xrightarrow[k_{-}]{q} R$$

2. Differential Equations

$$\frac{dX}{dt} = -k_{+}XR + k_{-}Z$$
$$\frac{dR}{dt} = -k_{+}XR + k_{-}Z + qZ$$
$$\frac{dZ}{dt} = k_{+}XR - k_{-}Z - qZ$$

3. Initial conditions

$$X(0) = N_0$$
$$R(0) = R_0$$
$$Z(0) = 0$$

4. Determination of parameters

 k_+ k_- q

DNA repair in G0/G1 phase

DNA repair modeling: comparison DSB and chromatin breaks

Survival of radiosensitive cells

Hippocampus – critical target in brain

$$S (D, Y_{DSB}, N_{particle}) = \exp(-\alpha D - \beta D^{2})$$

$$\alpha = Y_{DSB} \cdot P_{contrib} \cdot (1 - P_{correct}))$$

$$\beta = 0.5 \cdot Y_{DSB} \cdot P_{contrib} \cdot Y_{DSB} \cdot P_{correct} / N_{particle}$$

$$P_{contrib} = 1 - \exp(-Y_{DSB})$$

$$P_{correct} = [1 - \exp(-N_{particle})] \cdot [1 - \exp(-Y_{DSB})]$$

Survival of radiosensitive cells

Calculated survival of radiosensitive cells (neural stem cells, neural progenitor cells, immature neurons) after action of 1000 MeV protons, 290 MeV/u carbon ions, 600 MeV/u iron ions as compared with experimental data [Rola 2004, 2005, Tseng 2014].

Effect of radiation at the system level

Radiation damage to the central nervous system:

- molecular level
- cellular level
- functional level

Mechanisms of radiation damage to the central nervous system

Biological neural network of hippocampus: a model for electrophysiological activity

V. Cutsuridis, P. Poirazi // Neurobiology of Learning and Memory 120 (2015) 69-83

Mathematical description of neural network elements

Compartment models of neurons can be used both for calculating absorbed dose and for analyzing electrical activity

NEURON (v.7.4)

Neural network electric activity

Mathematical modeling of radiation-induced neurogenesis impairment

X-ray: theory vs experiment

Influence of immature cell loss on information processing

Effects of mutations in synaptic receptors: molecular dynamics simulation

NMDA receptor

NR1 subunit *GRIN1* chr9, 30373 bp

NR2B subunit *GRIN2B* chr12, 443027 bp

Opening of transmembrane ion channel

Microdeletion of p.Phe671_Gln672del results in the loss of two amino acids: phenylalanine and glutamine

Protein conformation change!

Ion channel properties for specific mutations

Batova, Bugay et al, J. Bioinf. Comp. Biol. 2019

Normal dynamics of brain activity

Effect of mutant synaptic receptors on brain electric activity

Machine learning in biological data analysis

Information system BIOHLIT

- computer vision algorithms based on machine learning and deep learning technologies;
- modern IT solutions for storing, processing and visualizing data;

Data used

- $\hfill\square$ video recordings of animal behavior
- □ photo of histological sections
- □ confocal microscopy images

Architecture of BIOHLIT

ML/DL/computer vision algorithms

Tracking a laboratory animal:

Neural networks for the task of neuron segmentation on brain slice images

Examples of automated video data analysis

		P JOKAJSHEW OLJAJANK WINDOWS P D D = 10 = 2 = 1	C Live Share R
Хозреватель решений 🗸 🗸 🗙	mouse tra	ek maincon' e X	• • 2 1
○ ○ △ A - ● `o - 5 # B o ''	bio_track	- (Глобальная область) -	- Internet
Connection - more (China - more China -	1994 1995 1995 1997 1998 2000 2001 2002 2003 2004 2005 2006 2006 2006 2006 2006 2006 2006	<pre>for (auto nn : names) { auto markup = std::make_shared<markupinfo>(); markup@nefield(nn, markup); boost::filesystem::path p(nn); ///std::cout << "filename and extension : " << p.filename() << std::endl; // file.ext std::stringprefix = p.stem().string(); std::string output_dirpath = p.parent_path().string(); ///autoprefix = getFileName(nn); trackMOUSE_new(nn, markup, split_second, output_dirpath,prefix); } return 0; </markupinfo></pre>	+ Astronu
	81% • 😒) <u>∆</u> 9 ← → « > Crp:2011 Couve	з Табуляция Смешанный

Laboratory of Radiation Biology

Molecular Radiobiology

Radiation Genetics

Radiation Cytogenetics

Radiation

Physiology

Radiation

Neuroscience

Radiation Protection

Astrobiology

Contacts:

Prof. A. N. Bugay LRB Director, JINR executive for contacts with Cuba **bugay@jinr.ru**

http://lrb.jinr.ru

Gracias por sulatención!