

Current status of the TPC simulation and reconstruction

A.Zinchenko

for the MPD collaboration VBLHEP, JINR, Dubna, Russia

DAC meeting

30 January 2018

- Realistic TPC simulation has to include most of the physics effects, including distortions
- Variety of reactions (central and peripheral *Au*+*Au* as well as *p*+*p* collisions) should be studied
- More detailed study of the TPC performance for track reconstruction in high multiplicity events, including two-track resolution, occupancy effects, etc.
- More detailed description of the reconstruction procedure in the TPC TDR
- Physics simulation and performance study should be continued based on the realistic MPD simulation

In my talk I'll cover and discuss most of these DAC recommendations to TPC simulation.

Some results for simulated p+p collisions will be presented in the talk of K.Shtejer.

- 1. The "realistic" TPC simulation ("microsimulation") procedure
- 2. Cluster / hit reconstruction method and results
- 3. Track reconstruction approach and results

- 1. Primary ionization (ionization clusters)
- 2. Drift and diffusion of ionization electrons
- 3. Gas gain fluctuations (Polya distribution)
- 4. Pad response (charge distribution on pad plane)
- 5. Electronics shaping
- 6. Signal digitization (ADC overflow)

Parameter	Value
Magnetic field	0.5 T
Drift gas	P10 (90% Ar + 10% CH ₄)
Drift velocity	5.45 cm/µs
Transverse diffusion at 0.5 T	185 μm/√cm
Longitudinal diffusion	320 μm/√cm
Pad size	$5x12 \text{ mm}^2 (27 \text{ rows}) + 5x18 \text{ mm}^2 (26 \text{ rows})$
Charge spread σ	0.196 mm
Electronics shaping time	180 ns (FWHM)
ADC dynamic range	12 bits
ADC sampling frequency	10 MHz

- Precluster finder (group of adjacent pixels in time bin pad space)
- Hit finder ("peak-and-valley" algorithm either in time bin pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies)) → COG around local maxima

Cluster topologies

A. Zinchenko

MLEM procedure (Bayesian unfolding)

MLEM procedure - information recovery

- 1. UrQMD central (0-3 fm) Au+Au at 9 AGeV
- 2. DCM-QGSM min. bias (0-8 fm) Au+Au at 9 AGeV

Double-hit resolution

A. Zinchenko

Two-pass Kalman filter with track seeding using outer hits (1st pass) or leftover inner hits (2nd pass)

Track reconstruction

Track reconstruction efficiency

Primary Primaries: $N_{hits} > 14$, $|\eta| < 1.3$ Efficiency, % 100 80 Efficiency Clones 60 Hell Ghosts 40 20 0₀ 1.2 1.4 p_{_}, GeV/c 0.2 0.4 0.6 0.8 1 N_{hits} > 14, |η| < 1.3 2 Contamination, % 1.8 1.6 Primary clones |.4∄ Ghosts .2 0.8 0.6 0.4 0.2 ზ 1.2 1.4 p_T, GeV/c 0.2 0.8 0.4 0.6 1

Track reconstruction efficiency

Primary

Momentum resolution

Track pointing accuracy

Track length resolution

~1.6 s of data taking

30.01.2018

- The MPD TPC "realistic" simulation is in operation
- Reconstruction results look reasonable
- Simulation / reconstruction chain can be used for physics analyses