

Rogachevsky Oleg for MPD collaboration IT school LIT 15.11.2022 Dubna

NICA storage rings

May 2022

Mpd @ NICA

QGP phase diagram

The collision of two heavy nuclei which approach and smash against each other with almost the speed of light. According to Einstein's theory of special relativity they look like thin pancakes. This "Little Bang" creates in the laboratory the primordial state of matter, called Quark-Gluon Plasma (QGP). The QGP expands like a fireball, cools and finally turns into ordinary matter, not unlike vapour turning into water

. The thousands of particles produced will be recorded by detectors. The tracks that those particles leave in the detectors will be analysed by modern powerful software tools.

The challenge is to infer the properties of the QGP state of matter by studying the different particles that arrive in the detectors.

HEP experiments data flow

Simulation, the third way to scientific knowledge after theory and experiment.

Software Hierarchy

History of CERN computing

THE FRONTIERS COLLECTION

FROM THE WEB TO THE GRID AND BEYOND FROM ON THE WEB TO THE GRID AND BEYOND FROM THE WEB TO THE GRID AND BEYOND FROM THE WE GRID AND BEYOND FROM THE WE GRID AND BEYOND FROM THE WE GRID AND FROM THE WEB TO THE GRID AND BEYOND FROM THE WEB TO THE WEB TO THE GRID AND BEYOND FROM THE WEB TO THE WEB TO THE GRID AND BE WYOND FROM THE WEB TO THE GRID AND BE THE WEB TO THE WEID THE GRID AND BE THE WEB TO THE GRID AND BEYOND FROM THE WEB TO THE GRID AND FROM THE WEB TO THE GRID AND BEY

> René Brun · Federico Carminati Giuliana Galli Carminati (Eds.)

FROM THE WEB TO THE GRID AND BEYOND

Computing Paradigms Driven by High-Energy Physics

D Springer

1	Technologies, Collaborations and Languages: 20 Years of HEP Computing R. Brun	1
2	Why HEP Invented the Web? B. Segal	55
3	Computing Services for LHC: From Clusters to Grids L. Robertson	69
4	The Realities of Grid Computing P.M. Lorenzo and J. Shiers	91
5	Software Development in HEP F. Carminati	115
6	A Discussion on Virtualisation in GRID Computing P. Buncic and F. Carminati	. 155
7	Evolution of Parallel Computing in High Energy Physics F. Rademakers	177
8	Aspects of Intellectual Property Law for HEP Software Developers L.S. Pinsky	201
9	Databases in High Energy Physics: A Critical Review J. Shiers	225
10	Towards a Globalised Data Access F. Furano and A. Hanushevsky	267
11	The Planetary Brain G.G. Carminati	289

History of CERN computing

1.2 Hardware and Operating Systems

At the end of the fifties, the first computer at CERN was a man, Wim Klein. He was hired to help physicists in computing complex mathematical expressions. His operating system and clock cycle were such that he was able to evaluate in a few seconds any trigonometric, square root, exponential or logarithmic function. His memory was able to store several MegaBytes of data where he could store the phone directory of Amsterdam at the end of the Second World War, then later tables of logs, prime numbers or large matrices. He was able to compete with the first CERN computer, a Ferranti Mercury in 1958, or even more elaborate machines in the early sixties. It was only when the first really powerful computer, a Control Data CDC 6600, came to CERN in 1964 that Wim "retired" and gave TV shows or famous lectures for CERN summer students.

MpdRoot history

2007 Letter of Intent2014 Conceptual Design Report2015 ... Detectors TDRs

MpdRoot structure

MPDroot code development

Hnatic Slavomir

SOFTWARE ENGINEERING

PRODUCT DEVELOPMENT

- R&D valid concepts integrated into whole
- Not in conflict with existing development
- User/developer friendliness
- Extensible
- Maintainable
- Not requiring unmanageable (geeky) support
- Compact, modular
- Follows SE principles & best practices

MPDROOT CODING RULES

Basic truths

- 1. It's harder to read the code, than to write it
- 2. Capability based approach being the most effect ive

Focus

- readability
- design
- general rules:
- ht ps://mpdroot.jinr.ru/mpdroot-naming-convent on/

Test-Driven Development (TDD)

Cluster Hit Finder

Preparatory work

- get rid of geometry singleton
- create invariant Base class for geometry

Create interface

- inheriting from FairTask
- interface dependencies should be passed by inject on
- dusterhit finder units, candidates for pure virtual methods: findQusters, findHits

Implementat ion

- current MIem algorithm to be adapted to interface (reconstruct on ident ty criterion)
- new fast clusterhit finder to be adapted to interface
- both algorithms are standardized and testable on levels of:
 - implemented pure virtual methods
 - implemented interface
 - reconstruct on

Hnatic S., Vala M., Busa J.

PREVIOUS DEPLOYMENT PROCEDURE

MPD dataflow (very raw)

TPC tracking with ACTS

MPD databases

- List of MPD members & authors
- MC events mass productions
- ECAL instrumentation
- TPC instrumentation
- TPC geometry
- TOF instrumentation
- TPC alignment parameters DB
- LogBook for Experiment
-

DIRAC resources

Tier-1CICC/Tier-2CloudsGovorunNICA ClusterUNAMRunningRunningRunningRunningRunningRunning

- NICA offline cluster **300** cores (limited for the users)
- GOVORUN up to 2256 cores in last production
- Tier1 920 cores
- Tier2 1000 cores
- Clouds(JINR and JINR Member States) 70 cores
- UNAM(Mexico University) 100 cores
- National Research Computer Network of Russia (now resources from SPBTU and JSCC) 672 cores – New resource, added in 12.2021.

All software packages are centrally stored in /cvmfs and are available on all computing clusters

Mass production storages integrated in Dirac File Catalog have size 1,7 PB. We expect another 0.4 PB during the modernization of Govorun

MPD mass production 2019-2022 summary(1):

MPD mass production 2019-2022 summary(2):

Generator

DCM-SMM PHQMD

vHLLE-UrQ

Smash

JAM

PHSD Total

DCM-QGSN

UrQMD

	PWG	Coll.		# of events()	Reco
		A., A.,	11	15	
	FWG4	AUAU D:D:	11	10	+
		DIDI	9	10	+
			9.40	10	+
	DWCC	AA	9.2	95	+
	PWGZ	AUAU		10	+
	PWG3	AUAU	1.1	10	+
		BIBI	7.7	10	+
			9	15	+
		рр	9	10	+
	PWG1	BiBi	9.2	11(50 underway)	+
	PWG1	BiBi	9.2	1	+
	PWG2	BiBi	8.8	15	+
			9.2	41(+20 underway)	+
			2.4/3.0/4.5	10/10/2	-
MD	PWG3	BiBi	11.5	15	+
		AuAu	11.5	15	+
		AuAu	7.7	20	+
	PWG1	BiBi	9.46	10	+
		ArAr	4/7/9/11	20/20/20/20	-
		AuAu	4/7/9/11	20/20/20/22	-
		XeXe	4/7/9/11	20/20/20/20	-
		CC	4/7/9/11	20/20/20/20	-
		рр	4/7/9/11	50/50/50/50	-
	PWG3	AuAu	3/3.3/3.5/3.8/4.0/4.2/4.5/5	40/40/40/40/40/40/40	
I-SMM	PWG3	AuAu	4/9.2	5/5	+
		AgAg	4/9.2	5/5	+
		BiBi	4/9.2	5/6	+
		BiBi	9/9.2	10/(15 underway)	+

1198(85 underway)

354(85 underway)

MPD mass production database

http://db-nica.jinr.ru/mpdmc/stat.php

23 mass production requests were done

All production data stored in Dirac File Catalog

MPD EventDisplay: TPC

TPC control dashboard

TPC eventdisplay

A free open source device-oriented controls toolkit for controlling any kind of hardware or software and building SCADA systems...

TPC control system

TPC online pad planes

West

East

TPC dashboard

TPC sectors time buckets

HEP physics & computing

The further we go, The further you go

