

Школа по информационным технологиям ОИЯИ

Joint Institute for Nuclear Research

SCIENCE BRINGS NATIONS TOGETHER

1000

At The Frontiers of Particle Physics

Sergei Shmatov (MLIT JINR, Dubna)

MLIT, JINR, Dubna 16-20 October, 2023

SCHOOL JINR

Lecture 1. At The Frontiers of Particle Physics

- What does Particle Physics do?
- How does Particle Physics do?
 - ✓ Physics Tools
 - ✓ Why do we need accelerator facilities?
 - ✓ Do we need more and more new accelerator facilities?
- Where Particle Physics Frontiers are (mainly LHC examples)
 - ✓ Selected hot points of particle physics
 - ✓ Is new physics really needed?

Lecture 2. Data Analysis in High Energy Physics (18 October)

- How do we achieve results?
 - ✓ Event Selection
 - ✓ Reconstruction of physics objects
 - ✓ Reconstruction of physics processes
 - ✓ Physics Analysis (Statistics and Monte Carlo tools)
- Something else?

Examples of Experimental Facilities

Data Analysis in High Energy Physics, MLIT IT School

What do physicist want to see? **Higss Boson**

From design

to discovery

🛉 Data

±10 +20

110

S+B Fit

B Fit Component

120

4 July 2012

Higgs announcement at CERN

	Int. Luminosity at 7, 8 TeV	mH [GeV]	Expected [st. dev.]	Observed [st. dev.]
ATLAS	10.7 fb ⁻¹	126.0 ± 0.6	4.6	5.0
CMS	10.4 fb ⁻¹	125.3 ± 0.6	5.9	4.9

18.10.2023

130

140

150 m,, (GeV)

What do they actually see? Real CMS Event with High Pile-up

High pileup event with 78 reconstructed vertices taken in 2012 by CMS

What is happening and and what we can do about it...

- Physics objects
- Event Selection
- Reconstruction and Processing
- Data Analysis

Data Analytics

['dā-tə a-nə-'li-tiks]

The science of analyzing raw data to make conclusions about that information.

Mosaic of Collisions

Physics Objects

- Muons (transverse momentum p_T)
- Electrons (energy and tr. momentum p_T)
- Photons (energy)
- Jets (energy and coordinates)
- ••••
- Missing energy and p_T
 - vectorial sum of all transverse momentum
- **Kinematic Variables**
- Transverse momentum p_T (energy)
 - particles that escape detection have $p_T=0$
 - total visible $p_T = 0$
- Longitudinal momentum p_z and energy E_z
 - particles that escape detection have $p_T=0$
 - visible p_z is not conserved (not so usefull variable)
- Angles
 - azimuthal and polar angles
 - polar angle θ is not Lorenz invariant \Rightarrow
 - rapidity y
 - or (or m=0) pseudorapidity η

 $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$

 $\eta = -\ln \left| \tan \left(\frac{\theta}{2} \right) \right|$

 4π -experiments cover 360⁰ over φ and large pseudorapidity range, |η| ≤ 5.0 (0.8⁰)

Data Analysis in High Energy Physics, MLIT IT School

Modus Operandi for Experiments

Onion structure of detector layers placed in B-field

Each layer identifies and measures (or remeasures) the energy of particles unmeasured by the previous layer

No single detector can determine identity and measure energies/momenta of all particles

Event Selection and Data Flow

Physics Processes at LHC

□ <u>Level-1:</u>

Hardware selection is comprised of custom electronics that process data from detectors, rough cutoffs

High Level Trigger: Software selection based on reconstruction of physics objects, event topology

Trigger Rates

Data Flows

Data Analysis in High Energy Physics, MLIT IT School

Data Analysis in High Energy Physics, MLIT IT School

SCHOOL **Data Model and Data Flow through Tiers**

• T0 \Rightarrow T1

- ✓ scheduled, time-critical, will be continuous during data-taking periods
- ✓ reliable transfer needed for fast access to new data, and to ensure that data is stored safely
- $T1 \Rightarrow T1$:
 - redistributing data, generally after reprocessing (e.g. processing with improved algorithms)
- $T1 \Rightarrow T2:$
 - ✓ Data for analysis at Tier-2s

Event Reconstruction

- Reconstruction (mathematical methods/algorithms/SW)
 - physics objects stable particles (e, μ, γ), clusters of particles (energy), vertexes, etc
 - ✓ unstable particles/ physics processes

Data Processing

Particles in Detectors

Data Analysis in High Energy Physics, MLIT IT School

18.10.2023

SCHOOL JINR Muon Track and Dumuons Reconstruction

CMS Muon System shows a excellent performance to detect different resonances

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO

Jet Finding

Calorimeter jet (cone)

- jet is a collection of energy deposits with a given cone **R**: $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2}$
- ♦ cone direction maximizes the total E_T of the jet
- various clustering algorithms
 - → correct for finite energy resolution
 - → subtract underlying event
 - → add out of cone energy

Particle jet

 a spread of particles running roughly in the same direction as the parton after hadronization

Global Event Reconstruction

Using all information of the detector together for optimal measurement

- Optimal combination of information from all subdetectors
- Returns a list of reconstructed particles
 - e, μ, γ, charged and neutral hadrons
 - Used in the analysis as if it came from a list of generated particles
 - Used as building blocks for jets, taus, missing transverse energy, isolation and PU particle identification

Machine Learning

HL-LHC: elephant in the room

This is when the R&D has to happen **LHC Today** ~200 collisions/event ▶ ~40 collisions/event ▶ ~10 sec/event processing time ~minute/event processing time(*) ▶ (at best)Same computing resources as (at best)Same computing resources as today Time/Event [a.u.] CMS Simulation, vs = 13 TeV, It + PU, BX=25ns 16 • Flat budget vs. more needs = Track Reco Current current rule-based reconstruction 14 Track Reco Run1 algorithms will not be sustainable 12 10 • Adopted solution: more granular and complex detectors \rightarrow more computing resources needed → more problems

• Modern Machine Learning might be the way out

DEEP LEARNING TECHNIQUES

Deep neural networks based on many low-level features with large training data sets to classify jets

Higgs ier

W or Z je

• Too many data, too large data -> need to filter online

• The solution to the HL-LHC problem: modern Machine Learning as a fast shortcut between the data and the right answer (the outcome of our traditional & slow algorithms)

DEEP DOUBLE-B TAGGER DP-2018/033

Large performance gain over previous algorithm

Example of $h \rightarrow ZZ \rightarrow 2e~2\mu$

Example of h \rightarrow **2** γ

Data Analysis in High Energy Physics, MLIT IT School

18.10.2023

Challenge to the Detector/SW (Example)

SCHOOL

JINR

Data Analysis

- Data vs Theory ⇒ which theories you believe vs. reject
- Significance of final results ⇒ do you trust your analysis or not?

Data Analysis: Theory and Modeling (Monte Carlo Simulation)

Chain of Simulation

Theory of Collisions

Cross Section = PDFs X Sub Process X Hadronisation

Event Generators

Three general-purpose generators:

- HERWIG
- Pythia
- Sherpa

Many others good/better at some specific tasks.

Generators to be combined with detector simulation (GEANT) accelerator/collisions ⇔ event generator detector/electronics ⇔ detector simulation

- to be used to predict event rates and topologies
 - simulate possible backgrounds
 - study detector requirements
 - study detector imperfections

Hit-and-miss Monte Carlo

$$I = \int_{x_{\min}}^{x_{\max}} f(x) dx = f_{\max} \left(x_{\max} - x_{\min} \right) \frac{N_{\text{acc}}}{N_{\text{try}}} = A_{\text{tot}} \frac{N_{\text{acc}}}{N_{\text{try}}}$$

Binomial distribution with $p = N_{\rm acc}/N_{\rm try}$ and $q = N_{\rm fail}/N_{\rm try}$, so error

$$\frac{\delta I}{I} = \frac{A_{\rm tot} \sqrt{p q/N_{\rm try}}}{A_{\rm tot} p} = \sqrt{\frac{q}{p N_{\rm try}}} = \sqrt{\frac{q}{N_{\rm acc}}} \longrightarrow \frac{1}{\sqrt{N_{\rm acc}}} \quad \text{for } p \ll 1$$

Detector Modeling

GEANT4

- Toolkit created by CERN to simulate the passage of particles through matter.
- Designed to make the physics used transparent within the toolkit, handle a wide range of geometries, and enable an easy adaptation of different physics to fit the application.

Data Analysis: Statistics

There are three kinds of lies: lies, damned lies, and statistics (c) Benjamin Disraeli

Статистический анализ

Событие (результат) называется "статистическими значимым", если оно вряд ли произошло случайно

p-value - вероятность получить результат, такой как наблюдается (или выше) в предположении, что нуль-гипотеза верна

⇒ в нашем случае вероятность, того, что флуктуация фона достигли (или превысили) наблюденное значение Most Likely Observation

$$p = P(n \ge n_{obs} \mid b)$$

IINR

Нуль-гипотеза – основная проверяемая гипотеза (фон) ⇒ Нулевая гипотеза отвергается, когда значение p-value меньше уровня стат. значимости α (по соглашению <0.05)

Масштабный фактор (strength factor)

$$\mu = rac{\sigma}{\sigma_{
m SM}} < \mu^{95\%}$$
 at 95% C.L., e.g. $\mu^{95\%} = 1 \Rightarrow$ exclusion

 σ_{SM} – сечение бозона Хиггса в СМ, σ - гипотетическое сечение бозона Хиггса

$$CL_{S}(\mu^{95\%}) = \frac{CL_{S+B}}{CL_{B}} = \frac{P(q_{\mu} > q_{\mu}^{obs} | B + \mu^{95\%} \times S)}{P(q_{\mu} > q_{\mu}^{obs} | B)} = 0.05$$

$$q_{\mu} = -2\ln\frac{\mathcal{L}(data | \mu, \hat{\theta}_{\mu})}{\mathcal{L}(data | \hat{\mu}, \hat{\theta})}, \qquad 34$$

Data Analysis in High Energy Physics, MLIT IT So

Significance of Discovery

The probability that an observed excess was a statistical fluctuation of the background (p-value)

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Notable values for an excess in particle physics are 3σ , or p-value = 0.0013; and 5σ , or p-value = 2.87 x 10⁻⁷. When we have an excess of 3σ we talk about an evidence, and when we have an excess of 5σ , we are facing a discovery.

... and as a result...

Story at Higgs Discovery

What does Brazilian Flag mean?

Model-independent limits on cross section (in narrow width approximation, NWA)

Channel	Z' _{SSM}		Z'_{ψ}		Channel	$k/\overline{M}_{\rm Pl} = 0.01$		$k/\overline{M}_{\rm Pl} = 0.05$		$k/\overline{M}_{\mathrm{Pl}} = 0.1$	
	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]	Charmer	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]
ee	4.72	4.72	4.11	4.13	e e	2.16	2.29	3.70	3.83	4.42	4.43
$\mu^+\mu^-$	4.89	4.90	4.29	4.30	$\mu^+\mu^-$	2.34	2.32	3.96	3.96	4.59	4.59
$e e + \mu^+ \mu^+$	5.15	5.14	4.56	4.55	$e e + \mu^+\mu^-$	2.47	2.53	4.16	4.19	4.78	4.81

Higgs boson is found

Standard Model works

Extensive Searches for New Physics

- No significant signals
- A set of hints
- A number of future projects

O

hutterstock.com · 264969203

Particle physics isn't going to die — even if the LHC finds no new particles

"FOR PETE'S SAKE, BILLY, I KNEW YOU HADN'T STUDIED MY GRAVITY LESSON!"

Anyway...

The Hitchhiker's Guide to the Galaxy by Douglas Adams

18.10.2023

Оорт первый взглянул на звездное небо и заметил, что Галактика вращается

(с) Г. Проницательный

Observation of Gravitational Waves

Data Analysis in High Energy Physics, MLIT IT School

18.10.2023

0 Normalized amplitude

0.45

THANK YOU FOR YOUR ATTENTION!

ATLAS and CMS Experiments

Detector systems are designed to measure:

energy and momentum of photons, electrons, muons, and jets up to a few TeV

What do we know today about the Standard Model from LHC?

During Run 2 the LHC produced 10¹⁶ collisions

Large samples of various particles produced:

- W bosons: 12 billion
- Z bosons: 2.8 billion
- Top quarks: 300 million
- B quarks: 40 trillion
- Higgs bosons: 7.7 million

SCHOOL Summary of Standard Model Tests with EWK

Bosons

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

Summaries of CMS cross section measurements

plots are updated for Summer 2023 Conferences

At the Frontiers of Particle Physics, MLIT IT School

18.10.2023

Higgs Portrait after 10 Years

During Run 2 of the LHC the experimental collaborations started to employ the combined data for precision measurements of Higgs properties (mass, width, couplings, CP, rare decays)

- All main production mechanisms are observed, including $h \rightarrow bbar$, ttH, VH
- Mass of Higgs boson m_h is measured with an accuracy of 0.1% (!)

- Precisions of cross section and branching ratio measurements in combined channel are down to 8.5% level
- We have ~6-30% accuracy for measurements of couplings
- The absolute value of a width $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$ MeV is getting closer to the SM expectations (4.1 MeV). We still need to improve an accuracy.
- Spin, parity, differential distributions do not contradict the SM

What do we have as a result?

THE STANDARD MODEL : IT HAS TO BREAK DOWN AT SOME POINT BUT JUST KEEPS CHUGGING ALONG!

MCK, COSPAZOH

Why we are still expecting the New Physics?

A room in Higgs Sector

... but the current accuracy of Higgs coupling measurements is still insufficient to reject BSM Higgs hypothesis EPJC 79 (2019) 421

SCHOOL Another Hint from the Higgs: Flavour Universality

The properties of the Higgs h_{125} agree fully with SM in decay into

- gauge bosons
- 3rd generation fermions (t/b/T)
- and do not conflict with results for the 2nd generation (no deviations in cc/µµ decays after RUN2)

We do not know and will not know until the end of the LHC whether the coupling of the Higgs h_{125} to 1st generation fermions is in a "standard" way or not.

If we have no Extra Higgses! (rare decays are enhanced within Extended Higgs Sectors)

SCHOOL Lepton universality in beauty-quark decays

Control uncertainties by measuring double ratios:

$$R_{X} \equiv \frac{\mathcal{B}\left(B \to X\,\mu\mu\right)}{\mathcal{B}\left(B \to X\,J\!/\psi\left(\to\mu\mu\right)\right)} \frac{\mathcal{B}\left(B \to X\,J\!/\psi\left(\toee\right)\right)}{\mathcal{B}\left(B \to X\,ee\right)} = \mathbf{1}_{(SM)}$$

At the Frontiers of Particle Physics, MLIT IT School

 $\mathcal{B}(B^+ \rightarrow Ke\mu^-) < 7 \times 10^{-9}$

 $\mathcal{B}\left(B_{s}^{0}\rightarrow\tau\mu\right)<3.4 imes10^{-5}$

[3 fb⁻¹ hep-ex/1909.01010]

 $[3 \text{ fb}^{-1} \text{ hep-ex}/1905.06614]$

W boson mass with the CDF II detector

 $W
ightarrow \mu
u$ and W
ightarrow e
u decays.

JINR

HOOL

 $M_W = 80,433.5 \pm 6.4_{
m stat} \pm 6.9_{
m syst} = 80,433.5 \pm 9.4~{
m MeV}/c^2$

Fermilab Muon g – 2 Experiment

$$\begin{split} a_{\mu}^{Th} & [2020] = 116\,591\,810(43) \times 10^{-11} \;(0.37 \; \text{ppm}) \\ a_{\mu}^{Exp} & [2021] = 116\,592\,061(41) \times 10^{-11} \;(0.35 \; \text{ppm}) \\ a_{\mu}^{Exp} - a_{\mu}^{Th} = (251 \pm 59) \times 10^{-11} \;(4.2\sigma) \end{split}$$

The new experimental result is: g-2 = 0.00233184110 +/- 0.00000000043 (stat.) +/-0.0000000019 (syst.), 0.2 ppm

THANK YOU FOR YOUR ATTENTION!

BSM Analyses in the LHC Collaborations

- Direct Searches for the Physics Beyond the SM
 - Conventional Signals, such as new resonances in dileptons/diphotons/ dijets spectra or non-resonant signals, combinations of physics objects (leptons/photons/jets) and MET/ b/t-jets tags, high-multiplicity events, etc
- SUSY Extended Gauge Sector Extra Dimensions CI/Excited Fermions/B3G
- SM
- ✓ Non-conventional Signals, for example displaced vertices/leptons/lepton-jets/dileptons from Long-Lived Particles or emerging jets/leptons from boosted heavy objects, $m \ll p_T$ (i.e. high-p_T Z/W/h₁₂₅ bosons)
- Long-Lived Particles (Dark Matter/Non-standard SUSY/Neutrino Masses/etc)
- Extended Higgs and Dark Matter Sectors

- BSM-Higgs Physics
 - ✓ Searches for the new Higgs states (from extended Higgs sector including SUSY)
 - ✓ Probes for the New Physics with h_{125} (Higgs as a tool for new discovery)

Extra Higgses, Dark Matter, Flavour Universality Violation

- Precision Tests of SM
 - ✓ Measurements of the W/Z, Drell-Yan (+ n jets) x-sections and angular characteristics
 - \checkmark Search for rare decays of B-mesons
 - \checkmark Observations of other rare process in top sector within SM (Wtb couplings, CP violating top

quark couplings, flavor-changing neutral current interactions of the t-quark and h₁₂₅) At the Frontiers of Particle Physics, MLIT IT School

Conventional Signals

- Heavy Resonances (extended gauge models, extra dimensions, technicolor) ⇒ dileptons, dijets, diphotons, ttbar, WZ
- Non-Resonant Signals
- Mono-particle + Missing ET (extended gauge models, extra dimensions, technicolor, SUSY) ⇒ mono-jet + MET, mono-photon + MET, mono-lepton + MET
- Microscopic Black Holes (extra dimensions) ⇒ highmultiplicity events

- $Leptoquarks \Rightarrow lepton + jet$
- 4^{th} Generation \Rightarrow leptons/jets, dilepton

SCHOOL Direct Search for BSM: Conventional Signals

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

18.10.2023

1000

1500

2000

2500

3000

Mediator mass M_{med} [GeV]

3500 4000

10-47

10

Dark matter mass m 10³ [GeV]

65

CDEX-10 [arXiv:1802.09016]

Need more data!

SCHOOL JINR Some Selected Recent Excitements from LHC

RUN3 is a perfect judge for these challenges!

18.10.2023

19.7 fb⁻¹/8 TeV

60

35.9 fb⁻¹(13 TeV

60 70 m_{μμ} [GeV]

ssia, 23-24 June, 2022

70

70 mu [GeV]

At the Frontiers of Particle Physics, MLIT IT School

18.10.2023

Direct Search for BSM: LLP Non-conventional Signals

LLPs may have decay lengths up to several meters, hence traveling through the inner detector layers without leaving any trace

- a proper lifetime cτ₀ is greater than or comparable to the characteristic size of the (sub)detectors
- small cτ₀ that comparable to the inner tracker size, no displaced tracks → "standard" prompt decay
- intermediate $c\tau_0 \rightarrow LLP$
- very large/infinite large cτ₀ → stable particles, "standard" MET signatures

 inelastic dark matter: relic particles that cannot scatter elastically off of nuclei the dark sector

IINR

school

 particles continue traveling for a long time and traverse several meters (Long-Lived Particles) before tunneling back into our visible universe (quarks or leptons)

LHC Prospects and beyond

LHC/High-Luminosity Timescale

The Present and the Future

school

JINR

LHC Satellite Experiments

At the Frontiers of Particle Physics, MLIT IT School

18.10.2023

Future Circular Colliders (100 TeV pp)

SCHOOL JINR

18.10.2023

74

Nature Physics 16, 402–407 (2020)

e+e- Colliders

Compact Linear Collider (CLIC)

	Collision energy	Integrated luminosity (unpolarized beams)
lst stage	380 GeV	1.0 ab-1
2nd stage	1500 GeV	2.5 ab ⁻¹
Brd stage	3000 GeV	5.0 ab ⁻¹

Circular Electron Positron Collider (CEPC)

International Linear Collider (ILC)

	Collision energy
1st stage	250 GeV
2nd stage	500 GeV
3rd stage	1000 GeV

Integrated	lu	ninosi	ty
(unpolarize	bs	beam	s)

2.0	ab-1
4.0	ab-1
5.4	ab-1

(ILC Technical Design Report, arXiv:1306.6327, 1903.01629)

(CEPC Study Group, arXiv:1809.00285, 1811.10545)

The ATLAS Experiment

The CMS Experiment

Open CMS

SCHOOL LHC Timeline and Data That We Have

CMS Luminosity Information https://twiki.cern.ch/twiki/bin/view/CMSPubl ic/LumiPublicResults

https://twiki.cern.ch/twiki/bin/view/CMS Public/DataQuality

MOEPAL: Monopole and Exotics Detector at the LHC

Heavy particles which carry "magnetic charge" Could eg explain why particles have "integer electric charge"

Monopole production

Remove the sheets after some running time and inspect for 'holes'

SAHER Smaller Experiments: TOTEM & LHC

TOTEM: measuring the total, elastic and diffractive cross sections

Add Roman pots (and inelastic telescope) to CMS interaction regions (200 m from IP) Common runs with CMS planned

RP2

D2 Q4

RP1

TAN

LHCf: measurement of photons and neutral pions in the very forward region of LHC

Q1 Q2 Q3

D1

Add a EM calorimeter at 140 m from the Interaction Point (of ATLAS)

RP3 RP4

Q6

05

BSR TOL VAB

LHC Start Up

10 September 2008, 9:50, the first LHC beam event was recorded by CMS

The First Collisions @ 7 TeV

The first collisions (3.5 TeV + 3.5 TeV) were happen on March 30th, 2010, at 13-00 (Geneve)

12:52 – CMS, 12:58 – ATLAS, 12:59 – LHCb, 13:01 – ALICE

E: 3500 GeV 31-03-2010 23:14:56 **PROTON PHYSICS: STABLE BEAMS** I(B1): 2.10e+10 I(B2): 1.69e+10 22:00 22:15 22:30 22:45 23:00 Time BIS status and SMP flags B1 B2 Link Status of Beam Permits Global Beam Permit Setup Beam Beam Presence Moveable Devices Allowed In Stable Beams PM Status B2 PM Status B1 ENABLED

14:30 Neutral pion decay was detected by CMS