

ML METHODS FOR PID IN HIC EXPERIMENTS

ALEXANDER AYRIYAN

JINR SCHOOL OF INFORMATION TECHNOLOGIES

16 – 20 October 2023

MESHCHERYAKOV LABORATORY OF INFORMATION TECHNOLOGIES, DUBNA

Identification Problem of Charged Particles

- In Machine Learning terms PID can be considered as classification task (Supervised learning).
- Let

 $= m_0 eX$

- **X** is the input space (particle characteristics such as: **dE/dx**, **m2**, **q**, **P**, etc)
 - **Y** is the output space (particle species such as: $\mathbf{\pi}$, \mathbf{k} , \mathbf{p} , etc.)
- Unknown mapping exists

•
$$m: X \rightarrow Y$$
,

• for values which known only on objects from the finite training set

•
$$X^n = (x_1, y_1), ..., (x_n, y_n),$$

• Goal is to find an algorithm a that classifies an arbitrary new object $x \in X$

•
$$a: X \rightarrow Y$$
.

 $\Gamma^{\mu}_{\tau v} = O_{\tau}$

 $m_{\lambda} = m_0 \exp(i \lambda t)$

 $L = -m_{\lambda}c'$

 $W = W_{\mu\nu}$

V. Papoyan, A. Ayriyan, A. Aparin, H. Grigorian, A. Korobitsin, A. Mudrokh

MPD APPARATUS AND PID

MPD particle identification (PID) based on

Time-Projection Chamber (TPC) and Time-of-Flight (TOF).

PARTICLE IDENTIFICATION IN MPD EXPERIMENT

 $m_{\lambda} = m_0 \exp(i h)$

 $L = -m_{n}$

 $W_{\mu\nu} = W$

Particle identification can be achieved by using information about **momentum**, **charge**, **energy loss** (TPC) and **mass squared** (TPC + TOF).

DECISION TREES FOR PID

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

W _{µv} = V

Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learner. They can be considered as automated multilevel **cut-based** analysis.

Gradient Boosting

TH TV

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\gamma}$

 $W_{\mu\nu} = V$

Gradient boosting is a machine learning technique which combines

weak learners into a single strong learner in an iterative fashion.

When **weak learnrs are decision tree**, the resulting algorithm is called **gradient-boosted decision trees**.

BASELINE PID IN MPD - N-SIGMA

PID efficiency and contamination for all tracks (left) and only identified tracks (right) in Bi+Bi collisions at 9.2 GeV

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

$$E^{s} = \frac{N^{s}_{corr}}{N^{s}_{true}} C^{s} = \frac{N^{s}_{incorr}}{N^{s}_{corr} + N^{s}_{incorr}}$$

XGBOOST VS LIGHTGBM VS CATBOOST VS SKETCHBOOST

TV

 $n_{\lambda} = m_0 \exp(-\frac{m_0}{2})$

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp(i \theta t)$

 $L = -m_{\lambda}C$

CÍ

 $W_{\mu\nu} = W$

Subsamples of the two MPD Monte-Carlo productions have been used

	prod05	prod06
Event generator	UrQMD	PHQMD
Transport	Geant 4	Geant 4
Impact parameter ranges	0-16 fm (mb)	0-12 fm
Smear Vertex XY	0.1 cm	0.1 cm
Smear Vertex Z	50 cm	50 cm
Colliding system	Bi+Bi	Bi+Bi
Energy	9.2 GeV	9.2 GeV

track selection criteria: (p < 100) & (|m²| < 100) & (nHits > 15) & (|eta|<1.5) & (dca < 5) & (|Vz| < 100)

TWO STAGES OF THE EXPERIMENTS

Some parameters for the tuning and model evaluation stages

Stage	Learning Rate	Max Number of Iterations	Early Stopping
Tuning	0.05	5 000	200
Model Evaluation	0.015	20 000	500

Results for hyperparameter tuning (after 30 iterations of the TPE algorithm for each GBDT)

Framework	Max. Depth	L2 leaf reg.	Min. data in leaf size	Rows sampling rate
XGBoost	8	2.3	0.00234	0.942
LightGBM	12	0.1	4	0.981
CatBoost	8	3.0	5	0.99
SketchBoost	8	3.0	5	0.99

COMPARATIVE ANALYSIS OF THE ALGORITHMS

COMPARISON WITH N-SIGMA

Efficiency ratio of XGBoost and n-sigma method

COMPARISON WITH N-SIGMA

Efficiency ratio of XGBoost and n-sigma method

XGBOOST MODEL INTERPRETATION. FEATURE IMPORTANCE

dedx charge m2 p beta gPt nHits dca Vx eta theta

0.6

mean(|SHAP value|) (average impact on model output magnitude)

0.8

1.0

1.2

TV

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

L = -m

0.0

0.2

0.4

momentum < 1 GeV/c

FINAL EFFICIENCY OF XGBOOST

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp$

 $L = -m_{\lambda}c$

 $W_{\mu\nu} = V$

V. Papoyan, A. Ayriyan, K. Gertsenberger, H. Grigorian, S. Metrs

BMN Detector

- Magnet SP-41 (0)
- Triggers: BD + SiD (1)
- Forward Silicon (2)
- GEM (3)
- 🔲 ECAL (4)
- CSC 1x1 m² (5)
- □ TOF 400 (6)
- CSC 2x1.5 m² (7)
- 🔲 TOF 700 (8)
- **ZDC (9)**

BMN DETECTOR

PID IN BMN

$\beta = \frac{1}{\sqrt{p}}$	$\frac{p}{p^2}$ +	<i>m</i> ²			
	m^2	=	p^2 β^2	$\frac{2}{2}-p$	2 ²
Название	Символ			BO	_
	VACTHULA	arri- vacrniu.	Заряд, ед.	Macca 1101 e.H. m _e	Macca, Mэ
Пионы	$\begin{cases} \pi^0 \\ \pi^+ \end{cases}$	π ⁻	0	264,1 273,1	135 140
r			1		1

Протон Нейтрон

938 940

1 1836,2 0 1838,7

Ĩ ñ

p n

$m_{\lambda} = m_0 \exp(i h)$ $L = -m_{\lambda}c$

DATASET

- Number of trakcs: around 5M
 - (60% protons, 40% pions, less than 1% of koans)
- Number of traks with at least one ToF: approx. 1.4M (27%)

Results

 $m_{\lambda} = m_0 \exp(i h t)$

- Number of trakcs: around 5M
 - (60% protons, 40% pions, less than 1% of koans)
- Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows identification efficiency more than 80%!

3.0

3.5

2.5

Results

 $a = m_0 ext$

• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of koans)

• Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows identification efficiency more than 80%!

HOW?!

60% 40%

Random efficincy: 80% minus 27% is approx 53%

Results

 $m_{\lambda} = m_0 \exp(i h)$

 $L = -m_{o}$

- Number of trakcs: around 5M
 - (60% protons, 40% pions, less than 1% of koans)
- Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows 98.3% efficiency for traks with ToF!

Спасибо за внимание!

<u>Тема:</u> Исследование и разработка методов и подходов применения методов машинного обучения в задачах теоретической физики (ТФ) и физики высоких энергий (ФВЭ)

Руководители: к.ф.-м.н. Айриян А.С., к.ф.-м.н. Григорян О.А.

<u>Аннотация</u>

 $= m_{o} e X$

W_w=W,

 $L = -m_{\lambda}$

В исследованиях в рамках ТФ и ФВЭ возникают проблемы, которые плохо формализуемые, либо их формальная математическая постановка требует привлечения сложного (а возможно еще не существующего) математического аппарата для их решения. В таких случаях может быть полезно применение методов машинного обучения. Планируется исследовать возможность использования машинного обучения при решении прямых и обратных задач для нелинейных уравнений, описывающих исследуемые физические процессы. Такой подход должен быть общим, т.е. независимым от физической сути решаемой проблемы, и эффективным, чтобы получить реальное применение на практике. Основной проблемой в данном направлении исследований является постановка задачи с точки зрения машинного обучения, а также формирование выборки, обучение на которой позволит решать поставленную задачу.

Что приобретет студент: практику решения актуальных научных задач, повышение квалификации в области машинного обучения, дипломную работу, обладающую научной новизной и актуальностью.

Возможные темы дипломных работ

- 1. Решение обратной задачи Толмана-Оппегеймера-Волкова с применением глубоких нейронных сетей;
- 2. Нейросетевой подход к прямому и обратному вейвлет-преобразованию;
- 3. Деревья решений для распознавания элементарных частиц по данным детекторов физики высоких энергий.

Общие требования к студентам

- Знание математических основ дифференциальных уравнений.
- Знание основ машинного обучения.
- Элементарное владение Python, желательно элементарное владение библиотеками NumPy, TensorFlow, Keras, Pandas, Pytorch.

COMPARATIVE ANALYSIS OF THE ALGORITHMS. TIMING

GPU: Nvidia Tesla V100-SXM2 NVLink 32GB HBM2

 $m_{\lambda} = m_0 \exp(\frac{m_{\lambda}}{m_0})$

 $L = -m_{\lambda}c$

CPU: Intel Xeon Gold 6148 CPU @ 2.40 GHz 20 Cores / 40 Threads