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IDENTIFICATION PROBLEM OF CHARGED PARTICLES

• In Machine Learning terms PID can be considered as classification task 
(Supervised learning). 

• Let
• Х - is the input space (particle characteristics such as: dE/dx, m2, q, 

P, etc)
• Y - is the output space (particle species such as: π, k, p, etc.)
• Unknown mapping exists

• m : X → Y,
• for values which known only on objects from the finite training set

• Xn = (x1, y1), ..., (xn, yn),
• Goal is to find an algorithm a that classifies an arbitrary new object x ∈ X

• a : X → Y.
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MPD APPARATUS AND PID

4

TPC Cryostat

SC Coil

FD

ECal

FHCal

Yoke TOF

MPD particle identification (PID) based on
Time-Projection Chamber (TPC) and Time-of-Flight (TOF). 



PARTICLE IDENTIFICATION IN MPD EXPERIMENT
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Particle identification can be achieved by using information about momentum, charge, energy loss (TPC)

and mass squared (TPC + TOF).



DECISION TREES FOR PID
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Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learner. 
They can be considered as automated multilevel cut-based analysis.



GRADIENT BOOSTING

7

GRADIENT BOOSTING

When weak learnrs are decision tree, the resulting algorithm is 
called gradient-boosted decision trees.

Gradient boosting is a machine learning technique which combines

weak learners into a single strong learner in an iterative fashion.



BASELINE PID IN MPD - N-SIGMA
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PID efficiency and contamination for 
all tracks (left) and only identified 
tracks (right) in Bi+Bi collisions 
at 9.2 GeV 



XGBOOST VS LIGHTGBM VS CATBOOST VS SKETCHBOOST
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DATASET
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Subsamples of the two MPD Monte-Carlo productions have been used

track selection criteria: (p < 100) & (|m2| < 100) & (nHits > 15) & (|eta|<1.5) & (dca < 5) & (|Vz| < 100)



TWO STAGES OF THE EXPERIMENTS
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COMPARATIVE ANALYSIS OF THE ALGORITHMS
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COMPARISON WITH N-SIGMA
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Efficiency ratio of XGBoost and n-sigma method 



COMPARISON WITH N-SIGMA
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Efficiency ratio of XGBoost and n-sigma method 



XGBOOST MODEL INTERPRETATION. FEATURE IMPORTANCE
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FINAL EFFICIENCY OF XGBOOST
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BMN DETECTOR
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BMN DETECTOR
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PID IN BMN
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PID IN BMN
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PID IN BMN
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PID IN BMN
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DATASET

• Number of trakcs: around 5M
(60% protons, 40% pions, less than 1% of koans)

• Number of traks with at least one ToF: approx. 1.4M (27%)
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RESULTS
• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of koans)
• Number of traks with at least one ToF: approx. 1.4M (27%)
XGBoost shows identification efficiency more than 80%!

 HOW?!
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RESULTS
• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of koans)
• Number of traks with at least one ToF: approx. 1.4M (27%)
XGBoost shows identification efficiency more than 80%!

 HOW?!
                                 60%                                                   40%

                   Random efficincy: 80% minus 27% is approx 53%
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RESULTS
• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of koans)
• Number of traks with at least one ToF: approx. 1.4M (27%)
XGBoost shows 98.3% efficiency for traks with ToF!
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СПАСИБО ЗА ВНИМАНИЕ!
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COMPARATIVE ANALYSIS OF THE ALGORITHMS. TIMING
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