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Introduction

• Superconducting spintronics is one of the most intensively developing areas of condensed matter
physics. An important place in this area is occupied by the study of Josephson junctions associated
with magnetic systems.

• In the superconductor–ferromagnetic–superconductor (SFS) structures, the spin-orbit coupling in
ferromagnetic layer without inversion symmetry provides a mechanism for a direct (linear)
coupling between the magnetic moment and the superconducting current. Such Josephson
junctions are called φ0-junction. The possibility to control magnetization by the Josephson current
and vice versa Josephson current by magnetization, has attracted much recent attention.

• Variants of a φ0-junction system with pulsed and inductive current sources (we have investigated
the peculiarities of the MR under the pulse of external magnetic field in the single junction
superconducting quantum interference device (SQUID) with φ0-junction).

• Both variants are described by the Cauchy problem for a system of nonlinear ordinary differential
equations. They are solved numerically in the first case by the two-step Gauss-Legendre method, in
the second case - by the four-step Runge-Kutta method.

• Computer simulation in a wide range of varying model parameters was organized using parallel
programming technologies.
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Theoretical model (pulse current model)

The dynamics of the magnetization in ferromagnetic layer in the φ0-Josephson junctions is described
by the Landau-Lifshitz-Gilbert equation.

(1)

where 𝜶 is damping parameter, 𝝎𝑭 is normalized frequency of ferromagnetic resonance. Here 𝑯 is
effective magnetic field with the components

(2)

where G – relation of Josephson energy to energy of magnetic anisotropy, r – the spin-orbit coupling
parameter, mx,y,z is x,y,z-component of magnetic moment 𝒎. Initial conditions:

mx(0)=0, my(0)=0, mz(0)=1.

𝑑𝑚

𝑑𝑡
= −

𝜔𝐹

1+𝑚2𝛼2 [𝑚 × 𝐻] + 𝛼 𝑚 𝑚𝐻 − 𝐻𝑚2 ,

𝐻𝑥 = 0 

𝐻𝑦 = 𝐺𝑟 sin 𝜑 𝑡 − 𝑟𝑚𝑦 𝑡

𝐻𝑧 = 𝑚𝑧 𝑡  
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Theoretical model (pulse current model)

The Josephson phase difference φ can be found using equation

(3)

where the pulse current is given by

(4)

Here As is the amplitude of the pulse current, and Δt is the time interval, in which the pulse current is
applied, t0 is the time point the maximal amplitude.

Thus, the system of equations (1) with effective field (2),(3) and with the pulse current (4) describes
the dynamics of the φ0-junction.

𝑑𝜑

𝑑𝑡
= 𝐼𝑝𝑢𝑙𝑠𝑒 𝑡 − sin 𝜑 − 𝑟𝑚𝑦 , 

𝐼𝑝𝑢𝑙𝑠𝑒 = ቊ
𝐴𝑆, 𝑡 ∈ [𝑡0 − Τ1 2∆𝑡, 𝑡0 + Τ1 2∆𝑡]

0, otherwise
.
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Theoretical model (SQUID model)

The dynamics of the magnetization M described by the Landau-Lifshitz-Gilbert equation, with the
corresponding effective magnetic field Heff .

(1)

where ΩF is ferromagnetic resonance frequency, α is Gilbert damping, K is anisotropic constant, G=EJ

/ KV, EJ is Josephson energy, V is the volume of the ferromagnetic layer, r= l (VSO / VSF) -spin orbit
coupling parameter, M0 is magnetization saturation.
According to the SQUID theory and well known resistively shunted junction model expressions for
total flux through the system can be written as

(2)

where Φ0=h/2e is the flux quanta, Φpulse is the flux created by the external magnetic field pulse, L is
the inductance of the superconducting loop, and I is the current through φ0-junction, ωc= 2πIcR/Φ0 .

𝑑𝑀

𝑑𝑡
= −

Ω𝐹

1 + (𝑀𝛼)2
𝑀 𝐻𝑒𝑓𝑓 + 𝛼 𝑀 𝑀𝐻𝑒𝑓𝑓 − 𝐻𝑒𝑓𝑓𝑀2

𝐻𝑒𝑓𝑓 =
𝐾

𝑀0
[𝐺𝑟 sin 𝜑 − 𝑟

𝑀𝑦

𝑀0
𝑒𝑦 +

𝑀𝑧

𝑀0
𝑒𝑧]

2𝜋

Φ0
Φ𝑝𝑢𝑙𝑠𝑒 − 𝐿

𝐼𝑐

𝜔𝑐

𝑑𝜑

𝑑𝑡
+ 𝐼𝐶𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 = 𝜑 − 𝑟𝑚𝑦,
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Theoretical model (SQUID model)
Coupled system of equations in normalized variables takes form

(3)

(4)

(5)

where mi is magnetization components (i = x, y, z) normalised to M0, ωF is frequency
of ferromagnetic resonance normalized to ωc, φpulse=(2π/Φ0)Φpulse is normalized
external magnetic flux. Here L is normalized to L0= Φ0/2πIc and time to ωc. The
external flux pulse φpulse has rectangular form

(6)

where A and Δt are the pulse amplitude and width, respectively. The initial conditions
for the LLG equation are the mx(0)=0; my(0)=0; mz(0)=1; φ(0)=0.

𝑑𝑚𝑥

𝑑𝑡
= −

𝜔𝐹

1+𝛼2 𝑚𝑦𝑚𝑧 − 𝐺𝑟𝑚𝑧𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 + 𝛼 𝐺𝑟𝑚𝑥𝑚𝑦𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 + 𝑚𝑥𝑚𝑧
2

𝑑𝑚𝑦

𝑑𝑡
= −

𝜔𝐹

1+𝛼2 −𝑚𝑥𝑚𝑧 + 𝛼 𝐺𝑟 𝑚𝑦
2 − 1 𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 + 𝑚𝑦𝑚𝑧

2

𝑑𝑚𝑧

𝑑𝑡
= −

𝜔𝐹

1+𝛼2 𝐺𝑟𝑚𝑥𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 + 𝛼 𝐺𝑟𝑚𝑦𝑚𝑧𝑠𝑖𝑛 𝜑 − 𝑟𝑚𝑦 + 𝑚𝑧 𝑚𝑧
2 − 1

𝑑𝜑

𝑑𝑡
=

𝜑𝑝𝑢𝑙𝑠𝑒 − 𝜑 + 𝑟𝑚𝑦

𝐿
− sin 𝜑 − 𝑟𝑚𝑦

𝜑𝑝𝑢𝑙𝑠𝑒 𝑡 = ቊ
𝐴, 𝑡 ∈ 𝑡0 − ΤΔ𝑡 2, 𝑡0 + ΤΔ𝑡 2 ;

0 otherwise
. 
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Magnetic reversal
Magnetic reversal is an effect when mz–component of the magnetic field changes 

the sign and takes the value -1 for a given initial value of +1.

As an example, we analyze effect of the SQUID inductance

L on MR. In figure the time dependence of the mz for

values of the L = 1, 2, 3, 4, 5 for the pulse parameters A=3

and Δt=6.

The numbers in figure show the value of corresponding L.

• In case of L = 1 there no reversal, at L = 2 MR is realized

and complete reversal realized at t = 500.

• At L = 3 the fast MR is realized, i.e. already during the

acting of pulse.

• In case of the L = 4, like the case of L = 2, the MR takes

long time (about t = 400).

• At L = 5 again we can see that MR is not realized.
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Parallel implementation
• For the numerical solution of the system of equations, the implicit two-step Gauss – Legendre method was

used for system with pulsed current and 4th order Runge-Kutta method was used for system with inductive

current.

• The parallelization process is based on the distribution of the points of the (G, α)-plane between parallel

threads. The values of G, α where the condition |mz(Tmax)+1|<ε is satisfied, are saved in output structure and

writing to the output file. The plane parameters can be changed to others.

• Also, using a parallel implementation, the influence of the AVX-512 vector instructions built into the latest

versions of Intel server processors was tested. These processors are available on the Govorun

supercomputer.

Time of calculations 

depending on the number of 

MPI-processes.

Red lines: MPI realization 

with basic compiler options;

Blue lines: MPI realization 

with AVX-512 options.

Inductive current system further speed up by 1.3-

1.6 times.

Inductive current system further speed up by 1.1-

1.15 times.
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Magnetic reversal
The influence of different parameters was considered for different systems:

For pulse current system we present the (G, r)-plane diagram for different values of the normalized frequency of the 
magnetic resonance 𝝎𝑭. The results are obtained with G-stepsize ΔG=0.1, r -stepsize Δr=0.005 at  As = 1.5; t0 =25.

For the inductive current system we present the (G, a)-plane diagram for different values of the inductance of the 

superconducting loop L=0.1, L=2, L=10. G-stepsize ΔG=0.1, α-stepsize Δα=0.001 at As = 1.5; r = 0.1; t0 =25; Δt = 6; ωF = 1.
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Conclusions
For pulse current system:

• The influence of the normalized frequency of the magnetic resonance 𝝎𝑭 on the width of magnetization
reversal domains was revealed. Shown that an increase in the inductance parameter leads to an increase in the
width of the MR bands.

• Using AVX-512 instructions allows us to further speed up the program by 1.1-1.15 times in comparison with
the standard MPI-version.

• Maximal speedup of MPI + AVX-512 implementation is about 16 times compared to the single-thread
calculation.

For inductive current system:

• The influence of the inductance parameter L on the width of magnetization reversal domains was revealed.
Shown that an increase in the inductance parameter leads to an increase in the width of the MR bands.

• Using AVX-512 instructions allows us to further speed up the program by 1.3-1.6 times in comparison with
the standard MPI-version.

• Maximal speedup of MPI + AVX-512 implementation is about 22 times compared to the single-thread
calculation.
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