Performance study of the anisotropic flow measurements with fixed-target mode of the MPD experiment at NICA

P. Parfenov, M. Mamaev and A. Taranenko (JINR, NRNU MEPhI)

LXXIV International Conference Nucleus-2024: Fundemental Problems and Applications 1-5 July 2024

The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA megascience experimental complex" № FSWU-2024-0024

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

 v_1 - directed flow, v_2 - elliptic flow

Anisotropic flow is sensitive to:

➤ Compressibility of the created matter

 (t_{exp} = R/c_s, c_s = c√dp/dε)

 ➤ Time of the interaction between overlap region and spectators

 (t_{pass} = 2R/γ_{CM}β_{CM})

v_n at Nuclotron-NICA energies

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

- v_n results from the E895 experiment are ambiguous:
 - v₁ suggests EoS and v₂ suggests hard EoS
- Additional experimental data are required to address this discrepancy

Selecting the model

MPD in Fixed-Target Mode (FXT)

Model used: UrQMD mean-field

- Bi+Bi, E_{kin} =1.45 AGeV ($\sqrt{s_{NN}}$ =2.5 GeV)
- \circ _Bi+Bi, E_kin=2.92 AGeV ($\sqrt{s_{NN}}$ =3.0 GeV)
- Bi+Bi, E_{kin}=4.65 AGeV ($\sqrt{s_{NN}}$ =3.5 GeV)
- Point-like target at z = -115 cm
- GEANT4 transport
- Multiplicity-based centrality determination
- PID using information from TPC and TOF
- Primary track selection: DCA<1 cm
- Track selection:
 - $\circ \quad N_{hits}{>}27 \text{ (protons), } N_{hits}{>}22 \text{ (pions)}$

The Bayesian inversion method (Γ-fit)

Relation between multiplicity N_{ch} and impact parameter b is defined by

the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \approx const, \ k = \frac{\langle N_{ch} \rangle}{\theta}$$

$$c_b = \int_0^b P(b')db' - centrality \text{ based on impact parameter}$$

Fit experiment distribution

Mean multiplicity as a function of c_b can be defined as follows:

$$\langle N_{ch} \rangle = N_{knee} \exp\left(\sum_{j=1}^{3} a_j c_b^j\right) \quad N_{knee}, \theta, a_{j-5 \text{ parameters}}$$

Fit function for N_{ch} distribution:

b-distribution for a given N_{ch} range:

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b \quad P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

2 main steps of the method:

Centrality determination: multiplicity fit

• 0 < η < 2

Multiplicity-based centrality determination (Γ-fit) was used

PID procedure

W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (2nd ed.), Springer, Verlag (2008)

Fit dE/dx distributions with Bethe-Bloch parametrization:

$$f(\beta\gamma) = \frac{p_1}{\beta^{p_4}} \left(p_2 - \beta^{p_4} - \ln\left(p_3 + \frac{1}{(\beta\gamma)^{p_5}}\right) \right)$$
$$\beta^2 = \frac{p^2}{m^2 + p_i^2}, \beta\gamma = \frac{p}{m}$$
$$p_i \text{- fit parameters}$$

Fit $(dE/dx - f(\beta \gamma))/f(\beta \gamma)$ with gaus in the slices of p/q and get $\sigma_p(dE/dx)$

Fit m^2 with gaus in the slices of p/q and get $\sigma_p(m^2)$

 $(dE/dx,m) \rightarrow (x,y)$ coordinates for PID:

$$x_{p} = \frac{(dE/dx)^{meas} - (dE/dx)_{p}^{fit}}{(dE/dx)_{p}^{fit}\sigma_{p}^{dE/dx}}, \ y_{p} = \frac{m^{2} - m_{p}^{2}}{\sigma_{p}^{m^{2}}}$$

PID procedure: Results

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}{}^{\text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6;

Flow methods for v_n calculation

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Results: $v_1(y)$

Systematics: xx, yy, F1, F2, F3

Results: $v_2(p_T)$

Systematics: xxx, xyy

The BM@N experiment (GEANT4 simulation for RUN8)

Square-like tracking system within the magnetic field deflecting particles along X-axis

Charge splitting on the surface of the FHCal is observed due to magnetic field

Comparison with BM@N performance

BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{\text{NN}}}$ = 2.5 GeV

- One needs to check higher energies ($\sqrt{s_{NN}} = 3$, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
 - Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Summary

- Performance study for the anisotropic flow measurements was shown for the MPD-FXT using realistic procedures for centrality determination, primary track selection and PID:
 - Multiplicity-based centrality determination using Γ-fit shows good agreement between fit and data
 - Overall good agreement between the estimated fit and impact parameter with the corresponding values taken directly from the model
- Basic PID was performed using dE/dx from TPC and m² from TOF
- Directed and elliptic flow of protons and pions were measured for $\sqrt{s_{NN}}$ = 2.5, 3, 3.5 GeV:
 - Good agreement between reconstructed and model data within corresponding acceptance windows for all particle species
- Both MPD-FXT and BM@N can complement each other in terms of v_n:
 - Cross-checks can be performed to test the implemented flow measurement techniques
 - Using results from both experiments can widen the rapidity coverage no single fixed target experiment can achieve that!

New data from the BM@N and MPD (MPD-FXT) is required to address existing discrepancies in the experimental data and provide further constraints for the EoS in the models

Backup

Centrality determination: vs Centrality

- Nhits>16
- 0 < η < 2

Multiplicity-based centrality determination using inverse Bayes was used

Results: $v_1(p_T)$

Systematics: xx, yy, F1, F2, F3

Results: $v_2(y)$

Systematics: xxx, xyy

