

Event-by-event determination of thermodynamic

quantities at NICA energies

V.N. Kovalenko

Saint-Petersburg State University

LXXIV International conference Nucleus-2024: Fundamental problems and applications

1–5 Jul 2024

Dubna, Russia

The study was funded by the Russian Science Foundation grant No.23-12-00042, https://rscf.ru/en/project/23-12-00042/.

Study of the Phase diagram of the QCD matter

Evolution stages of nucleus-nucleus collision

Evolution stages of nucleus-nucleus collision

Experimental search of the Critical point

Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., JPA 48: 305001

Thermal model of the hadron resonance gas

HRG: Equation of state of hadronic matter as a multi-component noninteracting gas of known hadrons and resonances

$$\ln Z \approx \sum_{i \in M, B} \ln Z_i^{id} = \sum_{i \in M, B} \frac{d_i V}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[1 \pm \exp\left(\frac{\mu_i - E_i}{T}\right) \right]$$

Grand-canonical ensemble: $\mu_i = b_i \mu_B + q_i \mu_Q + s_i \mu_S$ *chemical equilibrium*

Thermal model:

Equilibrated hadron resonance gas at the chemical freeze-out stage of high-energy collisions

Model parameters:

T – temperature $\mu_{B,} \mu_{Q,} \mu_{S}$ – chemical potentials V – system volume

Include all resonances as free, point-like particles (~400 species) established in the PDG listing

Thermal model of the hadron resonance gas
$$N_i^{hrg} = \frac{d_i V}{2\pi^2} \int_0^\infty p^2 dp \left[\exp\left(\frac{E_i - \mu_i}{T}\right) \pm 1 \right]^{-1} \propto e^{-m_i/T}$$

Particle decays: Unstable resonances decay before being detected

$$\Delta \swarrow_{\pi}^{N} \qquad K^{*} \swarrow_{\pi}^{K} \qquad \rho \swarrow_{\pi}^{\pi} \qquad \text{etc.}$$

Take into account feeddown: $N_{i}^{\text{fin}} = N_{i}^{\text{hrg}} + \sum_{j} BR(j \rightarrow i) N_{j}^{\text{hrg}}$
60-70% of π , p, etc. are from feeddown

Conservation laws:

Zero net strangeness $\rightarrow \mu_S$ Electric-to-baryon ratio Q/B = 0.4-0.5 $\rightarrow \mu_0$

Freeze-out parameters T, μ_B , V extracted through χ^2 minimization

$$\chi^{2} = \sum_{i} \frac{(N_{i}^{\text{fin}} - N_{i}^{\text{exp}})^{2}}{(\sigma_{i}^{\text{exp}})^{2}}, \quad i = \pi, K, p, \Lambda, \dots$$

V. Vovchenko, Statistical thermal model https://vovchenko.net/files/pdf/lectures/vovchenko_lund2019_lect.pdf

Determination of the chemical freeze-out parameters

V. Vovchenko. H. Stoecker, Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state Comput.Phys.Commun. 244 (2019), 295-310, arXiv 1901.05249 [nucl-th]

8

Chemical freeze-out parameters at RHIC energies

[1] L. Adamczyk et al (STAR Collaboration) Phys Rev C 96, 044904 (2017)

Event-by-event determination of μ_B and T

- Define μ_{B} and T (true values)
- Generate one event
- Select particles: K^{\pm} , π^{\pm} , p, \overline{p} , (optionally K_0^{s} , Λ , $\overline{\Lambda}$...)
- Count number of particles within the acceptance
- Fit per-event spectra with Thermal model (set error= \sqrt{mean})
- Obtain $\mu_B \pm \Delta \mu_B$, T ± Δ T, R ± Δ R (volume V=4/3 π R³)
- Repeat, average over event. Compare averages with true values.
- Check: fraction of events where T_{true} ΔT_i < T_i < T_{true}+ΔT_i (should be ≈68%)
- Calculate the method resolution as $R_T = \sqrt{(\langle T-T_{true} \rangle^2)} / T_{true}$, etc

Event-by-event determination of μ_B and T

Au-Au collisions at 11 GeV, central class (0-5%) We set in mid-rapidity $N_{ch} \approx 500$ (for $dN_{ch}/dy \approx 336$ [1])

Fraction of events where $T_{true} - \Delta T_i < T_i < T_{true} + \Delta T_i$: **70%** Fraction of events where $\mu_{Btrue} - \Delta \mu_{Bi} < \mu_{Bi} < \mu_{Btrue} + \Delta \mu_{Bi}$: **69%**

[1] L. Adamczyk et al (STAR Collaboration) Phys Rev C 96, 044904 (2017)

Determination of the method resolution

Au-Au collisions at 11 GeV We set in mid-rapidity $N_{ch} \approx 500$ (for $dN_{ch}/dy \approx 336$ [1]), central (0-5%) We set in mid-rapidity $N_{ch} \approx 168$ (for $dN_{ch}/dy \approx 113$ [1]), non-central (30-40%)

So, in Au-Au collisions at 11 GeV ($\mu_B \approx 300$ MeV and T ≈ 150 MeV) we expect resolution about 15% (without accounting detector effects)

[1] L. Adamczyk et al (STAR Collaboration) Phys Rev C 96, 044904 (2017)

Application to Monte Carlo generators: SMASH and EPOS4

SMASH, Au-Au collisions at 11 GeV, central (0-5%) T=98.5MeV, σ_T =13.4MeV, R_T =14%, Fraction of events within ΔT **47%** μ_B =430MeV, $\sigma_{\mu B}$ =25MeV, $R_{\mu B}$ =6%, Fraction of events within $\Delta \mu_B$ **64%**

SMASH, Au-Au collisions at 11 GeV, non-central (30-40%) T=93.1MeV, σ_{τ} =18.0MeV, R_{τ} =19%, Fraction of events within ΔT **55%** μ_{B} =447MeV, $\sigma_{\mu B}$ =43MeV, $R_{\mu B}$ =9.6%, Fraction of events within $\Delta \mu_{B}$ <u>68%</u>

EPOS4, Au-Au collisions at 11 GeV, central (0-5%) T=139.1MeV, σ_{T} =12.1MeV, R_{T} =8.7%, Fraction of events within ΔT **64%** μ_{B} =337MeV, $\sigma_{\mu B}$ =20MeV, $R_{\mu B}$ =6.0%, Fraction of events within $\Delta \mu_{B}$ <u>69%</u>

J. Weil et al (SMASH Collaboration), Phys.Rev.C 94 (2016) 5, 054905, arXiv: 1606.06642 [nucl-th] K. Werner, Phys. Rev. C 108, 064903 (2023), arXiv:2301.12517

Application for search for μ_B and T fluctuations in the real experimental data

- Fit experimental data and obtain average μ_B and T
- Set μ_B and T as true in Thermal Monte Carlo generator (for ex. Thermal-FIST). Set R to fit the multiplicity.
- Generate events and transfer data through Geant to get detector response, reconstruct events
- Obtain per-event μ_B and T
- Make sure that the estimate in reconstructed data is still correct, note the resolution.
- Apply the setup to experimental data, check if the fluctuations in μ_B and T are higher than the estimated resolution. The difference is accounted for real fluctuations in μ_B and T
- Check the estimate of fraction of events within sigma, it is expected to be ~68% at no fluctuations, and it is lower in presence of fluctuations (this also can reflect non-thermal behaviour in general)
- Each event can be assigned a probability density of the thermodynamical parameters, to use it together with other analysis sensitive to fluctuations.

Conclusions

- A method for estimating the temperature and baryon chemical potential in each event is developed
- Self-consistency of the method is demonstrated using Thermal-FIST package with its own Monte Carlo generator
- The approach was applied to event generators SMASH and EPOS4
- The resolution of the estimation at the level of 15% was obtained.
- The results showed the fundamental applicability of this method in a wide range of (T, μ_B)

Thank you

The reported study was supported by the Russian Science Foundation, project no. 23-12-00042, https://rscf.ru/en/project/23-12-00042/