Contribution ID: 156

Type: Oral

Peeling away surface neutrons from ²⁰⁹Bi in asymmetric collisions

Tuesday 2 July 2024 17:50 (20 minutes)

The ratio of neutron to proton densities increases toward the periphery of heavy nuclei. While this leads to a subtle difference (~0.5 fm) in the mean square radii of neutrons and protons, the thickness of such a neutron skin (NS) is very sensitive to the nuclear symmetry energy term in the equation of state (EOS) of nuclear matter important for both nuclear physics and astrophysics [1]. There have been several measurements of the NS thickness in ²⁰⁸Pb, see e.g. [2, 3], but their results diverge. In this respect, the estimation of the NS thickness in a neighboring nucleus such as ²⁰⁹Bi by new methods may help to solve the puzzle.

In this work, by means of Abrasion-Ablation Monte Carlo for Colliders (AAMCC) model [4] with MST-clustering [5] we simulate the emission of free spectator neutrons and protons in ultracentral collisions of ²⁰⁹Bi with target nuclei equal to (Bi) or smaller (Au, W) than ²⁰⁹Bi. It is expected that an excited donut-shaped spectator mater can be produced in such asymmetric ultracentral collisions. Then, an immediate break-up to free spectator neutrons and protons and protons can provide a unique possibility to analyze the n/p ratio at the nuclear periphery.

The multiplicity distributions of spectator neutrons and protons were calculated with and without neutron skin in 209 Bi. It was found that the neutron multiplicity distributions are different in Bi-Bi, Bi-Au and Bi-W collisions and they are sensitive to the presence of neutron skin in the projectile nucleus. The average neutron yield was calculated as a function of the volume of spectator matter in the considered ultracentral collisions. The studies of ultracentral 208 Pb $-^{208}$ Pb collisions at the LHC were proposed previously [6] to identify the presence of NS in 208 Pb. The ultracentral 96 Zr $-^{96}$ Zr and 96 Ru $-^{96}$ Ru collisions were also investigated at RHIC [7]. In all these cases the collisions of equal mass nuclei were investigated. In this work the method of Ref. [6] was extended to collisions of 209 Bi with lighter projectiles. The yields of spectator nucleons in ultracentral collisions and the n/p-ratio of released spectator nucleons were studied as a probe of NS thickness.

As known, the BM@N experiment is equipped with forward detectors capable of detecting spectator nucleons and fragments from ²⁰⁹Bi projectiles [8]. In view of further upgrades of the BM@N setup one can rely on the possibility to disentangle free spectator neutrons from protons to conduct the measurements proposed in the present work.

[1] C.A. Bertulani, J. Valencia, Phys. Rev. C 100, 015802 (2019)

[2] C.M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014)

[3] D. Adhikari et al., Phys. Rev. Lett. 126, 172502 (2021)

[4] A. Svetlichnyi et al., Bull. Russ. Acad. Sci. Phys. 84, 911 (2020)

[5] R. Nepeivoda et al., Particles 5, 40 (2022)

[6] N. Kozyrev et al., Eur. Phys. J. A 58, 184 (2022)

[7] L. Liu, et al., Phys. Rev. C 106, 034913 (2022)

[8] F. Guber et al., JINST 15 C05020 (2020)

Section

Heavy ion collisions at Intermediate and high energies

Primary authors: SVETLICHNYI, Aleksandr (Institute for Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics and Technology); SAVENKOV, Savva (Institute for Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics and Technology); NEPEIVODA, Roman (Institute for Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics and Technology); PSHENICHNOV, Igor (Institute for Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics and Technology)

Presenter: SVETLICHNYI, Aleksandr (Institute for Nuclear Research, Russian Academy of Sciences, Moscow Institute of Physics and Technology)

Session Classification: Heavy ion collisions at Intermediate and high energies