Contribution ID: 293 Type: Oral

Search for Sterile Neutrino with the Daya Bay full dataset

Wednesday 3 July 2024 13:00 (20 minutes)

on behalf of Daya Bay Collaboration

Modern neutrino physics contains a few anomalies that can not be described by the three-neutrino mixing and oscillation framework. Reactor neutrino experiments observed a deficit of the anti-neutrino flux at 2.5σ level with respect to the prediction (Huber-Mueller model). Gallium detectors for solar neutrinos observed a deficit of events from radioactive calibration sources of neutrino (37 Ar and 51 Cr) at 2.3σ level.

These anomalies could be explained with one or more sterile neutrinos, which interact only gravitationally. The reactor experiment Daya Bay has stored $5.55 \cdot 10^6$ IBD candidates from the interaction of electron antineutrinos. The statistics have been accumulated on a distance from 400 m to 2 km between reactor and detectors. It makes the experiment sensitive to sterile neutrino in a wide range of sterile mass splittings Δm_{41}^2 .

Since no significant signal of sterile neutrino was observed, it enables us to exclude a large region of sterile neutrino parameter space. The sensitivity to sterile amplitude $\sin^2 2\theta_{14}$ achieves $5 \cdot 10^{-3}$ with 95% confidence level in a region of $2 \cdot 10^{-4}$ eV² $< \Delta m_{41}^2 < 2 \cdot 10^{-1}$ eV².

The overview of the experiment and results of the analysis of the full dataset of Daya Bay will be presented.

Section

Neutrino physics and nuclear astrophysics

Primary author: ZAVADSKYI, Vitalii (JINR)

Presenter: ZAVADSKYI, Vitalii (JINR)

Session Classification: Neutrino physics and nuclear astrophysics