LXXIV International conference Nucleus-2024: Fundamental problems and applications JINR, Dubna, Russia, July 1-5, 2024

Reconstruction of strange particle decays from Xe+CsI interactions with the BM@N spectrometer

J. Drnoyan, M. Kapishin, I. Rufanov, V. Vasendina, <u>A. Zinchenko</u>, D. Zinchenko, R. Zinchenko

JOINT INSTITUTE FOR NUCLEAR RESEARCH

for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

Outline

- ✓ NICA Complex and BM@N experiment
- ✓ Detector performance
- ✓ Reconstruction of strange particle decays
- ✓ Steps toward physics analysis:
 - $\checkmark \Lambda m_T$ -spectra for different rapidities
 - \checkmark A lifetime measurement as a validation tool
 - ✓ $K_{s}^{0} m_{T}$ -spectra for different rapidities
- ✓ Summary and next steps

NICA Heavy Ion Complex

Baryonic Matter at Nuclotron (BM@N) Collaboration: 5 Countries, 13 Institutions, 217 participants

Detectors:

BM@N MPD SPD

Heavy Ion Collision Experiments

2.07.2024

A. Zinchenko

BM@

2.07.2024

Configuration of BM@N detector in Xe+CsI run

min bias trigger (7% events), beam trigger (3% events)

- Xe¹²⁴ + Csl interactions, beam kinetic energy 3.8A GeV:
- main trigger covers centrality < 70-75% (85% events)

• First physics run with full configuration Dec. 2022 – Jan. 2023

- ~500M triggers recorded

A. Zinchenko

Magnet SP-41 (0)

Vacuum Beam Pipe (1)

Central tracker performance

Track reconstruction: Vector Finder (VF) – homemade package

Λ and K^0_{s} selection

- ► ch2s[][1] $-\chi^2$ of p w.r.t. primary vertex
- \succ c2pv of Λ w.r.t. primary vertex

2.07.2024

A. Zinchenko

1.08

1.1

1.12

1.14

1.16

 $M_{inv} (GeV/c^2)$

"Hyperon production in Ar + KCl collisions at 1.76A GeV", Eur. Phys. J. A 2011, 47, 21.

A. Zinchenko

BM@

STAR strangeness production studies

"Strange hadron production in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV", *Phys. Rev. C 2020, 102, 034909.*

A. Zinchenko

BM@N

A: bins y vs m_T

2.07.2024

Λm_T -spectra in bins of y

https://arxiv.org/abs/1010.1675v3 Boltzman distribution from HADES paper:

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature *T*: $T = 198 \pm 12, 164 \pm 7, 138 \pm 4, 117 \pm 6 \text{ MeV}$

Lifetime of Λ : MC

Decay formula:

$$dN / dt = N_0 / \tau * exp(-t/\tau),$$

 $N_0 = p0 * p1 = 54574$

Proper life time: $\tau = lm / (pc)$

Used statistics: 1M MC events 1M exp. data (run 7830)

Mixed background subtraction: Data

2.07.2024

A. Zinchenko

BM@N

Λ raw yield and efficiency

2.07.2024

Lifetime of Λ

Cuts: chi2s[][0]>7&&chi2s[][1]>5&&c2pv<5&&pts[][0]>0.05&&pts[][1]>0.1

8.1

0.2

0.3

Data corrected for efficiency

0.4

0.5

0.6

t (ns)

2.07.2024

Lifetime of Λ

3 cuts:	centr. Value	c2pv<4	c2pv<6	chi2s[1]>4	chi2s[1]>6	chi2s[0]>6	chi2s[0]>8
τ, ns	0.270 ± 0.011	0.262 ± 0.011	0.265 ± 0.011	0.254 ± 0.010	0.263 ± 0.012	0.266 ± 0.011	0.269 ± 0.012
Mult.	1.499 ± 0.100	1.430 ± 0.100	1.460 ± 0.100	1.360 ± 0.090	1.500 ± 0.110	1.420 ± 0.100	1.470 ± 0.100
χ²/NDF	1.01 / 2	1.00 / 2	0.63 / 2	2.23 / 2	1.49 / 2	0.88 / 2	1.10 / 2

A. Zinchenko

BM@N

Λm_T -spectra for different lifetimes

ΛM_{inv} spectra for lifetime 0.1-0.2 ns

BM@N

Yields and efficiencies vs m_T for different lifetimes

Λm_T -spectra for different lifetimes

Corrected for efficiency m_{τ} -spectra for different lifetimes

t = 0.3 - 0.45 ns

×10³

t = 0.45 - 0.7 ns

 Λ decay curve reconstructed from integrated m_{τ} -spectra

0.7

BM@

Λm_T -spectra for different lifetimes

Effective temperatures for different lifetimes

https://arxiv.org/abs/1010.1675v3

Boltzman distribution from HADES paper:

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature (MeV):

 $T1 = 146\pm7$ $T2 = 158\pm8$ $T3 = 149\pm8$ $T4 = 163\pm13$

A. Zinchenko

BM@

K^0_{s} : bins y vs m_T

2.07.2024

$K^0_{s} m_T$ -spectra in bins of y

https://arxiv.org/abs/1010.1675v3 Boltzman distribution from HADES paper:

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

 $T = 134 \pm 13, 129 \pm 8, 113 \pm 6, 73 \pm 4 \text{ MeV}$

Summary and Look into the future

- BM@N
- ✓ The procedure for A and K⁰_s analysis in the BM@N experiment was implemented and tested
- ✓ Large-statistics processing is under way
- Centrality selection and trigger efficiency corrections are being worked on

Backup slides

Lifetime of K⁰_s: MC

Decay formula:

$$dN / dt = N_0 / \tau * exp(-t/\tau),$$

 $N_0 = p0 * p1 = 427241$

Proper life time: $\tau = lm / (pc)$

Table value τ = 0.0895 ns

Used statistics:

1M MC events 1M exp. data (run 7830)

A. Zinchenko

BN

K⁰_s invariant mass distributions

For different lifetimes

K⁰_s raw yield and efficiency

Efficiency-corrected yield vs lifetime

2.07.2024

K⁰_s: efficiencies and yields

t (ns)

K⁰_s efficiencies and corrected yields vs lifetime for different selection cuts

Cuts: $\chi^2_{\pi} > 7 \& \& \chi^2_{\pi} > 7 \& \& \chi^2_K < 4 \& \& p_{\pi^+} < 3$

From Monte Carlo

2.07.2024

A. Zinchenko

t (ns)

K⁰_s: efficiencies and decay curve

For 6 lifetime bins

Table mean lifetime value $\tau = 0.08954 \pm 0.00004$ ns

3 cuts:	centr. value	c2pv<3	c2pv<5	chi2s[1]>6	chi2s[1]>8	chi2s[0]>6	chi2s[0]>8
τ, ns	0.082±0.004	0.086±0.004	0.086±0.004	0.090±0.004	0.085±0.004	0.087 ± 0.004	0.086±0.004
Mult.	0.473±0.036	0.457 ± 0.036	0.492±0.038	0.436±0.034	0.471±0.037	0.473±0.035	0.473±0.037
χ^2 / NDF	2.73 / 2	2.27 / 2	2.27 / 2	2.72 / 2	1.06 / 2	3.40 / 2	2.26 / 2

2.07.2024

$K_{s}^{0} M_{inv}$ spectra for lifetime 0.025-0.075 ns

Corrected for efficiency m_T -spectra for different lifetimes

Effective temperatures for different lifetimes

https://arxiv.org/abs/1010.1675v3

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature (MeV):

 $T1 = 117\pm5$ $T2 = 113\pm5$ $T3 = 108\pm6$ $T4 = 125\pm16$

 $TMC = 97\pm6$

K⁰_s raw yield and efficiency

Efficiency-corrected yield vs lifetime

2.07.2024