Contribution ID: 132 Type: Oral

LIGHT AND MEDIUM-HEAVY NUCLEI PHOTONEUTRON REACTION CROSS-SECTIONS IN BREMSSTRAHLUNG BEAM EXPERIMENTS

Tuesday 2 July 2024 16:00 (10 minutes)

In cases for many (\sim 50) nuclei from $^{51}{
m V}$ to $^{209}{
m Bi}$ the experimental data on photoneutron partial reactions $(\gamma,1n)$, $(\gamma,2n)$, $(\gamma,3n)$ cross sections directly obtained using beams of quasimonoenergetic annihilation photons [1] do not satisfy objective physical criteria of data reliability [2-5]. The reasons are systematic uncertainties of experimental photoneutron multiplicity sorting method basing on partial reactions separation via measurement of neutron energies. Therefore, the experimental-theoretical method for partial reaction crosssection evaluation basing on physical criteria was used for analysis of reliability of data obtained using quite different method on the beams of bremsstrahlung [6]. Partial reaction cross sections are separated and determined in such kind experiment using statistical theory corrections to the neutron yield cross section $\sigma(\gamma, xn)$ = $\sigma(\gamma,1n)+2\sigma(\gamma,2n)+3\sigma(\gamma,3n)+\cdots$ measured at first. Experimental cross sections of the reactions $(\gamma,1n)$ and $(\gamma,2n)$ are definitely unreliable in the cases of 51 V, 52 Cr, 59 Co, but enough reliable in the case of 90 Zr. The reason is that the role of two-nucleon reaction $(\gamma,1n1p)$ was not taken into account, though this reaction competes with also two-nucleon reaction $(\gamma,2n)$. It was shown via the results of calculation in the frame of the Combined photonuclear reaction model [5] that energy positions and amplitudes of cross sections of $(\gamma,1n1p)$ and $(\gamma,2n)$ reactions are very close to each other in the cases of 51 V, 52 Cr, 59 Co, but in the case of 90 Zr the value of $(\gamma,1n1p)$ reaction cross section is very small and could be negligible. This conclusion is analogous to that of the preliminary investigation of the cases of 127 I, 165 Ho, 181 Ta [7]. It means that in the cases of relatively light nuclei 51 V, 52 Cr, 59 Co, as well as 58,60 Ni [8] the reaction (γ ,1n1p) plays important role in nucleus photodisintegration but its contribution is not correctly described by statistical theory corrections.

- 1. IAEA Nuclear Data Section database "EXFOR. Experimental nuclear reaction data", http://www-nds.iaea.org/exfor.
- 2. V.V.Varlamov et al. // Phys. Atom. Nucl. 2017. V. 80. P.957.
- 3. V.V.Varlamov // Phys. Part. Nucl. 2019. V. 50. P.637.
- 4. V.V.Varlamov et al. // Moscow University Physics Bulletin. 2023. V. 78. N. 3. P. 303.
- 5. B.S.Ishkhanov et al. // Phys. Atom. Nucl. 2008. V.71. P.493.
- A.V.Varlamov et al. Atlas of Giant Dipole Resonances. Parameters and Graphs of Photonuclear Reaction Cross Sections. // INDC(NDS) –394, IAEA NDS, Vienna, Austria, 1999.
- 7. V.V.Varlamov et al. // Bull. Rus. Acad. Sci. Phys., 2023. V. 87. N. 8. P. 1188.
- 8. V.V.Varlamov et al. // Bull. Rus. Acad. Sci. Phys., 2023. V. 87. N. 8. P. 1179.

Section

Experimental and theoretical studies of nuclear reactions

Primary authors: DAVYDOV, Aleksandr; MOSTAKOV, Ivan (Physics Faxculty of Lomonosov Moscow State University); ORLIN, Vadim (Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University); VAR-LAMOV, Vladimir (Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University)

Presenter: DAVYDOV, Aleksandr

Session Classification: Experimental and theoretical studies of nuclear reactions