Analysis of the Scattering Amplitude of Proton on the Bounded Nucleons Basing on the Proton-Nucleus Scattering Data

I.A.M.Abdulmagead^{1,2,3}, V.K.Lukyanov¹, E.V.Zemlyanaya¹, K.V.Lukyanov¹

¹Joint Institute for Nuclear Research, Dubna 141980, Russia ²Physics Department, Faculty of Science, Cairo University, Giza 12613, Egypt ³Academy of Scientific Research and Technology (ASRT), Cairo, Egypt

LXXIV International conference Nucleus-2024: Fundamental problems and applications July 2, 2024 Dubna, Russia

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Proton-Nucleus Scattering

(4)目を

Introduction

The **proton-nucleus scattering** is the traditional topic of investigations to obtain information on a structure of nuclei, including the nuclear mean-field optical potential (OP), nuclear radius, the nuclear density distribution.

At **low energies** of incident protons, one can construct the respective OP with accounting for the direct¹ and exchanged² contributions. In these studies the result was reduced to the non-local potential. In this case, many other constructions of nuclear potentials are made only of the real parts of potentials while their imaginary parts as usually are introduced in a phenomenological way.

In the case of **relativistic energies**, calculations of cross sections are based on the high energy approximation (HEA).

Our studies are aimed onto analysis of the data at energies about 200-1000 MeV, where the re-scattering processes and the non-locality effects do not play a decisive role but relativistic effects should be taken into account.

Below we construct folding microscopic optical potentials based on the elementary nucleon-nucleon scattering amplitude and on the density distribution function of nucleons in a nucleus.

¹Doan Thi Loan et al., Phys.Rev. C **92** 034304 (2015)

²Doan Thi Loan et al., J. Phys G **47** 035106 (2020)

.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Our approach

We follow the theoretical approach previously developed and used for the pion-nucleus scattering analysis³. It is based on the **microscopic HEA-based 3-parameter model of OP** and using the distorted wave Born approximation for calculating observables with a help of the standard computer code **DWUCK4**⁴.

This folding model⁵ of OP depends on the **nuclear density distribution function** of a nucleus and on the elementary nucleon-nucleon scattering amplitude which itself depends on three parameters:

- 1) σ : the total nucleon-nucleon scattering cross section ,
- 2 α : the ratio of real to imaginary parts of the scattering amplitude at forward angles,
- β : the slope parameter .

These three "in-medium" parameters of the NN scattering amplitude are adjusted to the experimental data of elastic proton-nucleus scattering and compared with the "free" ones known from analysis of proton-nucleon scattering data. Such analysis allows one to estimate effect of nuclear matter on the NN scattering amplitude.

³V.K.Lukyanov et al., Nucl. Phys. A **1010** (2021) 122190 ⁴P.D.Kunz & E.Rost, Computational Nuclear Physics 2, Springer 1993

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Mathematical Framework (1/6)

An expression for the OP can be written as follows:

$$U(r) = -\frac{(\hbar c)\beta_c}{(2\pi)^2 k} \int e^{-i\mathbf{q}\mathbf{r}} \rho(q) F_N(q) d^3q.$$
(1)

Here ρ is the form factor of the density distribution function ,

 $\beta_c = v_{c.m.}/c = k_{lab}/[E_{lab} + m^2/M_A]$ is the ratio of the proton velocity at the c.m. system to the light velocity⁶, which is expressed through its total energy in the lab system $E_{lab} = (k_{lab}^2 + m^2)^{1/2} = T_{lab} + m$, where k_{lab} is the moment of the relative motion, T_{lab} is the proton kinetic energy at the lab system, and M_A is the target nucleus mass.

Then, for the **nucleon-nucleon amplitude of scattering** $F_N(q)$ one uses the expression

$$F_{N}(q) = \frac{k}{4\pi} (i + \alpha) \, \sigma f_{N}(q), \ f_{N}(q) = e^{-\beta q^{2}/2}.$$
(2)

One should underline that, in the case of the pA scattering, **this amplitude describes the proton scattering on the bounded (not free!) nucleons**.

⁶In Eq.(1) we use the units MeV and fm, which follow to $\hbar c = 197.327$ MeV fm. In the other cases, the natural system of units is used where $\hbar = c = 1$, and thus *E*, *T*, *k*, *m* have the same dimensions [MeV].

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Mathematical Framework (2/6)

It is convenient to expand the **plane waves** $e^{\pm i\mathbf{q}\cdot\mathbf{r}}$ in Eq. (1) into their **multipole components**

$$e^{\pm i\mathbf{q}\cdot\mathbf{r}} = 4\pi \sum_{l,m} (\pm i)^l j_l(qr) Y_{l,m}(\hat{q}) Y_{l,m}^*(\hat{r}).$$
(3)

After substituting from Eqs. (2) and (3) into Eq.(1) and integrating over the angular variables using the **orthonormality** property of **spherical harmonics**, one can get the OP in the form

$$U(r) = V(r) + iW(r) = -\frac{(\hbar c)\beta_c}{(2\pi)^2}\sigma(\alpha + i)\int_0^\infty j_0(qr)\rho(q)f_N(q)q^2dq.$$
(4)

In calculations, we used the nuclear density distribution in the form of the **symmetrized Fermi function**

$$\rho(r) = \rho_0 \frac{\sinh(R/a)}{\cosh(R/a) + \cosh(r/a)}, \quad \rho_0 = \frac{3A}{4\pi R^3} [1 + (\frac{\pi a}{R})^2]^{-1} \tag{5}$$
ragead, V.K.Lukyanov, E.V.Zemlyana Proton-Nucleus Scattering JINR-Nucleus-2024: July 2 5/21

Mathematical Framework (3/6)

with the corresponding Fourier transform

$$\rho(q) = -\rho_0 \frac{4\pi^2 aR}{q} \frac{\cos qR}{\sinh(\pi aq)} [1 - (\frac{\pi a}{R}) \coth(\pi aq) \tan qR], \ R \ge \pi a.$$
(6)

Transition Potential

To study **inelastic scattering** of proton on a nucleus which will be excited to a **collective excited state** *L*, we construct the transition potentials for inelastic scattering starting from the above prescription. So, one needs to take into account explicitly the **multipole decomposition of the nuclear density distribution** $\rho(\mathbf{r})$ that enters the folding calculation, Eq. (1), as follows

$$\rho(\mathbf{r}) = \rho(r) + \rho_L(r) \sum_{\mu} \alpha_{L\mu} Y_{L\mu}(\hat{r}), \quad L = 2, 3, \dots$$
(7)

where $\alpha_{L\mu}$ are variables associated with collective motion of a nucleus (for example: rotations and vibrations) with $\rho_L(r) = -r \left(\frac{r}{R}\right)^{L-2} \frac{d\rho(r)}{dr}$. Therefore, the nuclear density form factor becomes

Mathematical Framework (4/6)

$$\rho(\mathbf{q}) = \rho(q) + \rho_L(q) \sum_{\mu} \alpha_{L\mu} Y_{L\mu}(\hat{q}), \tag{8}$$

where the form factor of the ground state density, $\rho(q)$, is given by Eq.(6) while $\rho_L(q)$ has the expression

$$\rho_L(q) = 4\pi \int_0^\infty j_L(qr) \ \rho_L(r) \ r^2 dr.$$
(9)

Finally, substituting from Eq.(8) in Eq.(1) we obtain the **direct and transition potentials** for calculations of **elastic and inelastic scattering observables**

$$U(\mathbf{r}) = U(r) + U_{L}(r) \sum_{\mu} \alpha_{L\mu} Y_{L\mu}(\hat{r}), \qquad (10)$$

where U(r) is given by Eq.(4) while the **transition potential** $U_L(r)$ reads as

$$U_L(r) = -\frac{(\hbar c)\beta_c}{(2\pi)^2}\sigma(\alpha+i)\int_0^\infty j_L(qr)\ \rho_L(q)\ f_N(q)\ q^2dq. \tag{11}$$

Differential cross sections of the **proton-nucleus scattering** are calculated via **numerical solving the wave equation**

イロト イボト イヨト イヨト

Mathematical Framework (5/6)

$$(\nabla^{2} + k^{2})\psi(\vec{r}) = 2\mu U_{eff}(\vec{r})\psi(\vec{r}).$$
(12)

Here the **relativization is taken into account by introducing the effective mass** \bar{m} in the effective potential

$$U_{eff}(\mathbf{r}) = \gamma^{(r)} \cdot U(\mathbf{r}), \quad U(\mathbf{r}) = U(\mathbf{r}) + U_c(\mathbf{r}), \quad \gamma^{(r)} = \frac{\overline{\mu}}{\mu},$$
 (13)

where U is the folding OP (10), μ and $\bar{\mu}$ are the reduced masses of the form:

$$\mu = \frac{mM}{m+M}, \quad \bar{\mu} = \frac{\bar{m}M}{\bar{m}+M}, \quad \bar{m} = \sqrt{k^2 + m^2}.$$
 (14)

The relativistic momentum k in the center of mass system is equal to

$$k = \frac{M k_{lab}}{\sqrt{(m+M)^2 + 2MT_{lab}}} = \frac{M \sqrt{T_{lab}(T_{lab} + 2m)}}{\sqrt{(m+M)^2 + 2MT_{lab}}}.$$
 (15)

DWUCK4

The **wave equation, Eq. (12)**, is solved **numerically** with a help of the standard **computer code DWUCK4**. So, one takes into account the relativization and distortion effects in scattering of a nucleon in the target nucleus field.

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Average free pN-amplitude parameters

In our study, **we do not distinguish the cases when the incident proton scatters on the proton or on the neutron** inside the target nucleus. Therefore we compare our calculations of "in-medium" proton-nucleon cross sections with the averaged "free" cross sections

$$\sigma = \frac{\sigma_{pp} \cdot Z + \sigma_{pn} \cdot N}{Z + N},\tag{16}$$

where *Z* is number of protons and *N* is number of neutrons in the target nucleus, σ_{pp} and σ_{pn} are, respectively, the experimental proton-proton and proton-neutron cross sections⁷ and are given by

$$\sigma_{pp} = 19.6 + 4253/E - 375/\sqrt{E} + 3.86 \cdot 10^{-2}E \ mb \tag{17}$$

and

$$\sigma_{pn} = 89.4 - 2025/\sqrt{E} + 19108/E - 43535/E^2 \ mb. \tag{18}$$

⁷C.A. Bertulani & C. De Conti, Phys. Rev. C **81** 064603 (2010) -

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Results

• In calculations of the **elastic and inelastic scattering cross sections**, basing on the constructed proton-nucleus OP, and then in comparison of them with the corresponding experimental data one can get **the best fit parameters** σ , α , β **of the elementary amplitude** of scattering of nucleons on the bounded nucleons, (in-medium parameters).

• Thus we have a possibility to **compare the information on these typical characteristics of the proton scattering on the free nucleons** with the same characteristics but for the proton scattering on the bounded nucleons ("in-medium" effect). It is natural one that the obtained sets of such parameters are different for different collision energies.

ヘロト ヘヨト ヘヨト ヘヨト

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

11/21

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Proton-Nucleus Scattering

[INR-Nucleus-2024: July 2

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Energy dependence of Potential Parameters; σ, α, β

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Proton-Nucleus Scattering

JINR-Nucleus-2024: July 2 18 / 21

Table: Microscopic Optical Potential parameters and Deformation ones

	E, MeV	σ , fm ²		α		β , fm ²		0/2	0/2
		free	medium	free	medium	free	medium	α_2	α_3
²⁰⁸ Pb	200	3.3332	2.7438	0.8835	1.6429	1.2654	1.3623		0.066
	295	3.0828	2.6153	0.3749	0.4440	0.8234	0.3463		0.079
	400	3.0243	2.8497	0.3180	0.2704	0.5239	0.3334		
	800	4.1706	3.2818	-0.0975	-0.1932	0.2067	0.2873	0.069	0.108
	1040	4.2079	4.3440	-0.3141	-0.1275	0.2067	0.3887		0.096
⁵⁸ Ni	192	3.2185	3.0978	0.9765	1.1869	1.2364	0.8273		
	295	2.9717	2.2743	0.4026	1.1838	0.8014	0.2766		
	400	2.9566	2.5378	0.3375	1.0439	0.5115	0.2198		
	800	4.2571	3.3351	-0.0745	-0.1837	0.2110	0.0001	0.157	0.115
	1040	4.2835	4.2571	-0.2814	-0.2222	0.2110	0.1352	0.191	0.142
⁴⁰ Ca	200	3.1366	1.5485	0.9300	2.2126	1.2400	0.5126	0.069	
	300	2.9365	2.3185	0.3879	1.1013	0.7663	0.2581		
	400	2.9434	2.4382	0.3412	1.0544	0.5091	0.2289		
	800	7.2740	3.3866	-0.0700	-0.2114	0.2100	0.2065	0.115	0.303
¹² C	200	3.1366	1.3995	0.9300	1.5583	1.2400	0.1125		
	300	2.9365	1.6368	0.3879	1.7776	0.7663	0.3302		
	800	4.2740	4.0528	-0.0700	-0.2606	0.2100	0.2271		
	1040	4.2982	3.5156	-0.2750	-0.5450	0.2210	0.1328		

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

イロト イボト イヨト イヨト

Conclusion

 The HEA-based microscopic model of OP provides good agreement with experimental data of proton-scattering on target nuclei ²⁰⁸Pb, ⁵⁸Ni, ⁴⁰Ca and ¹²C at energies between 200 and 1000 MeV.

• The peculiarity of this OP is that the target nucleon under consideration is not a free, but bounded, and therefore the **fitting parameters obtained from proton-nucleus scattering data do not coincide with those evaluated from proton scattering on free nucleons**.

• In general, the $\sigma(E)$ curves for the "in-medium" pN-scattering are close to the corresponding experimental data on "free" pN-scattering. As for the other "in-medium" and "free" characteristics, α and β , they look to be rather in agreement between each other in case of the heavier target nuclei ²⁰⁸Pb and ⁵⁸Ni while for more light nuclei ⁴⁰Ca and ¹²C one sees a noticeable disagreements.

Next steps

- Nucleus-Nucleus scattering
- Effect of **spin-orbit** potential contribution
- Lower energies

Acknowledgments

The work is supported by the **Scientific Cooperation** between **Arab Republic of Egypt (ASRT)** and **Russia (JINR)**

Thank you for your attention!

I.Abdulmagead, V.K.Lukyanov, E.V.Zemlyana

Proton-Nucleus Scattering

JINR-Nucleus-2024: July 2 21 / 21