

Front-end electronics and mechanical design of the HGND for BM@N experiment

A. Makhnev Institute for Nuclear Research of RAS Nucleus-2024, 07.2024

EoS and neutron flows measurements at the BM@N

- EoS describes the relation between density, pressure, energy, temperature and the isospin asymmetry
- The study of E_{sym} density dependence is very important for the understanding of astrophysical phenomena like supernovae and neutron stars.
 - The radius of a neutron star depends on the symmetry energy behaviour at high nuclear matter density.

$$E_A(
ho,\delta) = E_A(
ho,0) + E_{sym}(
ho)\delta^2 + O(\delta^4) \ {
m Symmetric} \ {
m Matter} \ {
m Symmetry} \ \delta = (
ho_n -
ho_p)/
ho$$
 = (N-Z)/A

- Collective flows of charged particles are a sensitive probe of E_{sym} at high densities at intermediate energies where reaction dynamics is largely determined by the nuclear mean field.
- Measurements of ratio of neutrons/protons flows at nuclear matter density range (2-4)p0 can be performed at nearest perspectives only at the BM@N.
- Neutron detector to measure neutrons flows is needed.

Detector arrangement

- Detector for highenergy neutron flow measurement
- ToF method with T0 as the "start" signal source
- 7m measurement distance
- Detector is split into 2 "blocks" for improved acceptance

Detector "block"

- Each block consists of:
 - A VETO-layer
 - 8 Cu absorbers
 - 8 sensitive layers
 - 11x11 grid of scintillations each
- Assembly is light-tight and aircooled
- Framing is built with lightweight Al profiles

Detector layer

- Each layer consists of:
 - 11x11 grid of individual scintillatior tiles
 - A front-end readout board
 - An LED calibrator board
- Layer is assembled in a lighttight 3D-printed casing
- Readout boards connects to the data collection equipment via edge connectors

HGND electronics architecture

Front end electronics

- 20dB amplification
- $-2.2 \text{ nV}/\sqrt{Hz}$ noise
- level
- Per-channel supplies
- Variable threshold (common for the half-layer)
- LVDS output

ToT method

- Vast amount of channels
 creates a dataflow and wiring
 concern
- A ToT method is chosen for amplitude and timing measurements
- Amplitude data allows for slewing correction of timing measurements
- See the correction methodology at arXiv:2308.08341

 ÷	-		-
	-		=
ł			58
	in the	i	6
			æ
	-	. 1	-

		10-				
17. 40. 5 19. 40. 5 19. 19. 19. 19. 19. 19. 19. 19.						
14 14 14 14 14 14 14 14 14 14 14 14 14 1						

~

- LVDS-driven
- Buffer network with terminated impedance-matched
- traces
- Simultaneous illumination of all 66 channels

HGND support structure

HGND support structure

HGND mechanical mock-up

- A mock-up of the HGND block has been assembled at INR
- Mock-up allows to test:
 - Loading-unloading of the converters using hoists
 - Mounting-unmounting of the detector layers
 - Framing deformation and sag under load

HGND test assembly

- A prototype of the readout board is under assembly
- A prototype of the LED board is completed
- A prototype case for the detector layer is completed
- Full-readout-chain tests are expected by Fall

