Dualities in heavy-ion collisions

NUCLEUS-2024, JINR, Dubna, July 3

G.Yu. Prokhorov, <u>O.V. Teryaev</u>, V.I. Zakharov JINR

OUTLINE

- Dualities = Different descriptions (with different accuracy under the different conditions) of same processes
- Quark-hadron
- Hydro- kinetic
- Statistical-gravitational (geometrical)

Strong interactions and gravity in HIC

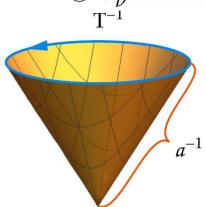
 $E_{EM}/E_{G} \sim e^{2}/(m/M_{PI})^{2}$ $M_{PI} \sim 10^{18} \text{ GeV}$

For 2 particles with M_{Pl} mass at Compton wavelength distance $(1/M_{Pl})$: $E_G \sim (G = 1/M_{Pl}^2) M_{Pl}^2 / (1/M_{Pl}) = M_{Pl} g \sim (G = 1/M_{Pl}^2) M_{Pl}^2 / (1/M_{Pl})^2 = M_{Pl}$

Gravitational interaction is strongly suppressed ~ $(\Lambda/M_{Pl})^2$

Equivalence Principle

I: Acceleration <-> Gravity


HIC: a ~
$$\Lambda$$
, a/g ~ $\frac{c^2}{v_{\oplus}^2} \cdot \frac{R_{\oplus}}{R_A}$ ~ 10³⁰
M_{Pl} -> Λ ("GeV Gravity")

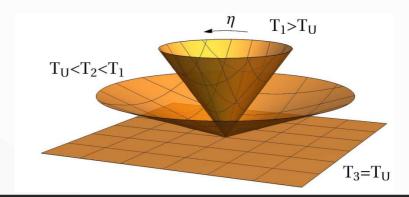
Emergent conical geometry [G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov. JHEP, 03:137, 2020]

• The effects of acceleration can also be investigated from the point of view of an **accelerated observer**. In this case, the euclidean **Rindler coordinates** are to be used:

$$ds^{2} = \rho^{2} d\theta^{2} + d\rho^{2} + d\mathbf{x}_{\perp}^{2} \implies \mathcal{M} = \mathbb{R}^{2} \otimes \mathcal{C}_{\nu}^{2}$$

Dictionary for translation *thermodynamic* characteristics in *geometrical*: Inverse acceleration ⇐⇒ distance from the vertex Inverse proper temperature ⇐⇒ circumference

- **Two approaches** to calculate acceleration effects:
 - 1) Geometrical (Rindler, conical):
 - 2) Statistical (interaction with boost):


 $\alpha^{
ho}\hat{K}_{
ho}$

• Novel phase transition at the Unruh temperature in both approaches!

[G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov. arXiv:2304.13151. (2023) and work in preparation]

 $\rho_{s=1/2} = \frac{7\pi^2 T^4}{60} + \frac{T^2 |a|^2}{24} - \frac{17|a|^4}{960\pi^2}$

Same results - **duality** of two approaches!

Gravity trace in flat spacetime: Cheshire cat grin

"Well! I've often seen a cat without a grin,' thought Alice 'but a grin without a cat! It's the most curious thing i ever saw in my life!"

- Lewis Carroll, Alice in Wonderland

Flat space limit: Kinematical Vortical Effect (KVE)

• Let's move on to the limit of **flat space-time**. Despite the absence of a gravitational field, there **remains a contribution** to the axial current induced by the gravitational chiral anomaly:

Cheshire cat grin

Flat:
$$j_{\mu}^{A} = \lambda_{1}(\omega_{\nu}\omega^{\nu})\omega_{\mu} + \lambda_{2}(a_{\nu}a^{\nu})w_{\mu}$$

Curved: $\nabla_{\mu}j_{A}^{\mu} = \mathscr{N}\epsilon^{\mu\nu\alpha\beta}R_{\mu\nu\lambda\rho}R_{\alpha\beta}^{\lambda\rho}$
Direct check:
1) Spin 1/2 : $\left(-\frac{1}{24\pi^{2}} + \frac{1}{8\pi^{2}}\right)/32 = \frac{1}{384\pi^{2}}$
(Rarita-Schwinger-Adler model): $\left(-\frac{53}{24\pi^{2}} + \frac{5}{8\pi^{2}}\right)/32 = -\frac{19}{384\pi^{2}}$

- A new type of anomalous transport the Kinematical Vortical Effect (KVE).
- New global polarization (talk of N. Tsegelnik) source?

[G. Yu. Prokhorov, O. V. Teryaev, and V. I. Zakharov, Phys. Rev. Lett. 129, 151601, (2022)]

CONCLUSIONS-I

Duality between statistical and geometric descriptions

Different mechanisms of information loss?

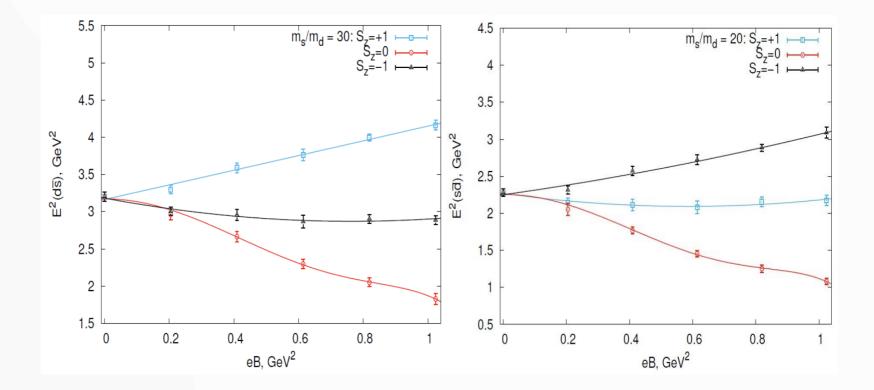
Phase transition in HIC: hadronization ~ fall into Black hole?

Gravitational anomaly: KVE ~ Cheshire Cat grin?

Yet another duality: superstrong (~ m_n^2)magnetic fields vs vorticity

Vector K* mesons in strong magnetic field from SU(3) lattice gauge theory

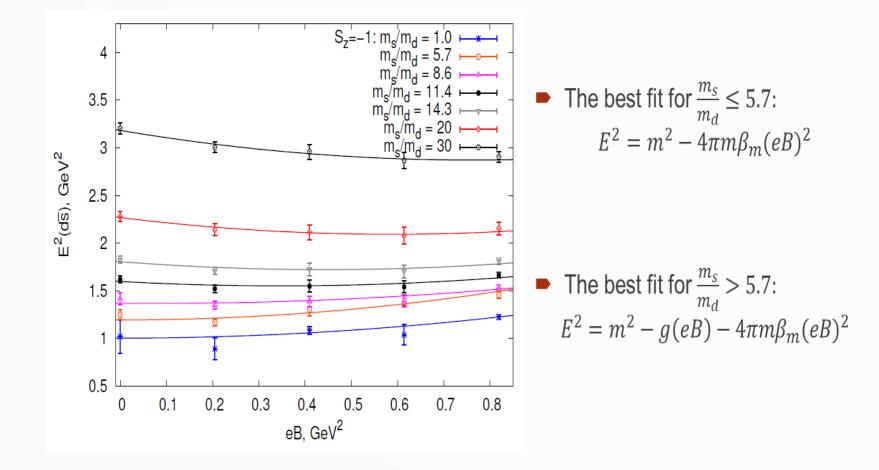
O.V. Teryaev,


E.V. Luschevskaya and E.A. Dorenskaya

KI ITEP

Introduction

- For the vector K^{0*} and $K^{\pm*}$ mesons we explore on the lattice
 - The dependence of the energy and magnetic properties from spin projection
 - The dependence of the magnetic characteristics from $\frac{m_s}{m_d}$ ratio
- For the K^{0*} and \overline{K}^{*0} mesons we calculate
 - Magnetic moment which is the new effect
 - The magnetic dipole polarizability
 - The tensor polarizability which is the measure of lepton asymmetry
- For the charged vector $K^{\pm *}$ mesons we find
 - The magnetic moment


Energy of vector K^{*0} and \overline{K}^{*0} mesons

• Lattice parameters: $N_s^3 \times N_t = 18^4$, a = 0.105 fm, $m_{\pi} = 367(8) MeV$ The lattice data are fitted by equations:

*E*²(*S_Z* = 0) = *m*² − 4π*m*β_m(*eB*)²−4π*m*β_m^{h1}(*eB*)⁴−4π*m*β_m^{h2}(*eB*)⁶ at *eB* ∈ [0:1.03]*GeV*²
 *E*²(*S_Z* = ±1) = *m*² ∓ *g*(*eB*) − 4π*m*β_m(*eB*)² at *eB* ∈ [0:1.23]*GeV*²

Fits for magnetic moment and polarizability

Magnetic moment and dipole polarizability of the K^{*0} meson for spin $S_z = -1$.

Previous results:

- Lattice calculations: $g(K^{*0}) = -0.26$, Hedditch et. al. Phys.Rev.D75 094504 (2007).
- Light cone <u>QCD</u> sum rules $g(K^{*0}) = 0.26 \pm 0.4$,

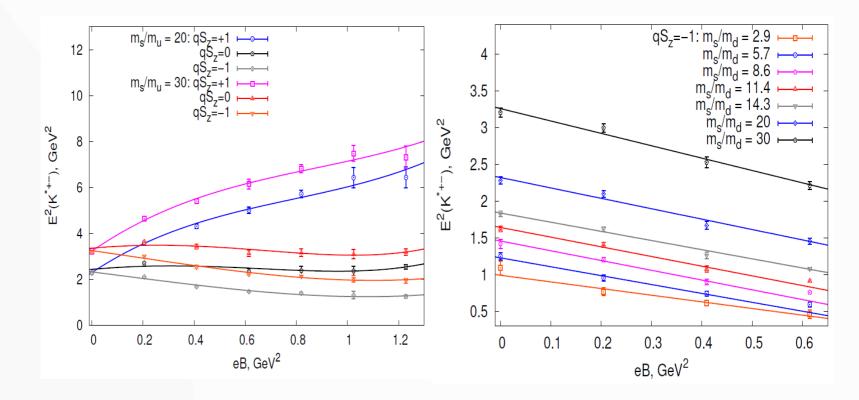
Aliev et.al., Phys.Lett B678 470 (2009).

Field cumulant method $g(K^{*0}) = -0.183$,

M. Badalian and Yu. A. Simonov, Phys. Rev. D 87 074012 (2013).

$\beta_m (\text{GeV}^{-3})$ $eB(GeV^2)$ p-value g-factor m_s/m_u -0.026 ± 0.006 [0:0.82]0.522[0:1.03]5.7 -0.033 ± 0.003 0.3848.6 -0.044 ± 0.106 [0:1.23] -0.019 ± 0.005 0.728[0:1.23] -0.265 ± 0.100 -0.024 ± 0.005 11.4 0.642[0:1.23]14.3 -0.378 ± 0.097 -0.025 ± 0.004 0.710[0:1.23]20 -0.599 ± 0.076 -0.027 ± 0.003 0.966[0:1.23]30 -0.816 ± 0.103 -0.024 ± 0.003 0.913

Our lattice results:


Lepton asymmetry and tensor polarizability for K^{*0} and \overline{K}^{*0} mesons

m_s/m_u	$\beta_{S=+1} (\text{GeV}^{-3})$	$\beta_{S=-1}(\text{GeV}^{-3})$	$\beta_{S=0}(\text{GeV}^{-3})$	β_t
1	-0.026 ± 0.006	-0.026 ± 0.006	0.185 ± 0.022	-3.2 ± 0.3
5.7	-0.039 ± 0.006	-0.033 ± 0.003	0.232 ± 0.044	-3.4 ± 0.4
8.6	-0.018 ± 0.012	-0.019 ± 0.005	0.212 ± 0.019	-3.6 ± 0.3
11.4	-0.019 ± 0.010	-0.024 ± 0.005	0.230 ± 0.039	-3.7 ± 0.3
14.3	-0.016 ± 0.009	-0.025 ± 0.004	0.206 ± 0.019	-2.8 ± 0.2
20	-0.011 ± 0.009	-0.027 ± 0.003	0.187 ± 0.017	-2.8 ± 0.3
30	-0.0002 ± 0.007	-0.024 ± 0.003	0.167 ± 0.019	-2.5 ± 0.2

- The large negative values of β_t indicate that the longitudinal polarization dominates for the decays of these mesons.
- The dileptons are mainly emitted in the directions close to the perpendicular ones to the magnetic field axis.

$$\beta_t = \frac{\beta_{S_z=+1} + \beta_{S_z=-1} - 2\beta_{S_z=0}}{\beta_{S_z=+1} + \beta_{S_z=-1} + \beta_{S_z=0}}.$$

Energy of the vector $K^{\pm *}$ mesons

We find the g-factor from the fit (right figure)

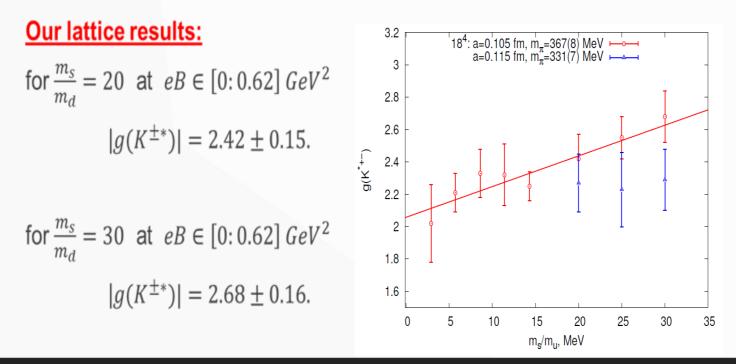
$$E^2 = m^2 + eB - gqS_z(eB)$$

where q is the meson charge, e is the electron charge.

Magnetic moment of $K^{\pm *}$ mesons

Previous results:

• Lattice background field method from 2pt correlation functions: $|g(K^{\pm *})| = 2.36$,


F.X.Lee et.al., Phys. Rev. D78 094502 (2008).

• Lattice calculations from 3pt corr. functions: $|g(K^{\pm *})| = 2.23$,

Hedditch et. al. Phys.Rev.D75 094504 (2007).

Field cumulant method $|g(K^{\pm *})| = 2.194$,

M. Badalian and Yu. A. Simonov, Phys. Rev. D 87 074012 (2013).

Conclusions-II: magnetic moment but no tachyonic mode due to strangeness

For K^{*0} mesons

- The g-factor was found
 - The magnetic moment of the K^{*0} meson is negative in value, that agrees with other lattice results.
 - The extrapolations to physical pion mass and continuous limit are necessary.
- The magnetic dipole polarizability was found
- The tensor polarizability is negative in value
 - So the dileptons are mainly emitted in the directions close to the perpendicular ones to the magnetic field axis.

For $K^{\pm *}$ mesons

The g-factor was calculated