# JUNO Experiment **Current Status and Prospects**

**N. Anfimov on behalf of the JUNO Collaboration** Nucleus-2024







### **Neutrino oscillation** What is missing?



- Known parameters:  $\theta_{23}, \theta_{12}, \theta_{13}, |\Delta m_{32}^2|, \Delta m_{21}^2$
- Unknown parameters: sign of  $\Delta m^2_{32}$  (mass ordering), CP phase  $\delta$

Inverted

Normal







### **Jiangmen Underground Neutrino Observatory - JUNO** The concept

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \left( \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right)$$



- Successor of the Daya Bay: continue using reactor neutrinos and liquid scintillator
- Equal baseline to two reactor power plants: Yangjiang and Taishan

To determine the mass ordering (sign of  $\Delta m_{32}^2$ ) independent of the CP phase  $\delta$ 



## **Oscillation of reactor antineutrino**



$$\begin{split} 1 - P_{\overline{\nu}_e \to \overline{\nu}_e} &= \sin^2 2\theta_{13} \left( \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} + \cos^2 \frac{\delta_{CP}}{4E} \right) \\ \delta_{CP}, \theta_{23} \\ E_{\text{vis}} &\approx E_{\nu} - 0.78 \, \text{MeV} \end{split}$$

 $\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$ 

3/1
 ・<</li>
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</











 $E_{
m vis}pprox E_
u-0.78\,
m MeV$ 







### **Mass ordering determination Shifted oscillation pictures**



Energy resolution is important! Knowledge of primary antineutrinos spectrum is needed!



### **Mass ordering determination Shifted oscillation pictures**



The energy resolution is 3% @ 1 MeV Knowledge of the primary antineutrinos spectrum is needed



### **Taishan Antineutrino Observatory - TAO JUNO's satellite detector**



TAO location is 44 m from a reactor core Reactor antineutrino spectrum with Energy resolution  $\leq 2\%$ 



## JUNO site

**Surface buildings/campus:**  Surface Assembly Building LAB storage (5k ton) Water purification/Nitrogen Computing Power station •Cable train Office/Dorm



## **Civil Construction**

~ 600m vertical shaft, ~1300m sloped tunnel





#### More water than expected:

- -Max water inflow ~ 600 m<sup>3</sup>/h
- -Survey shows rock resistivity is low
- -Bore holes found no water
- -Water is mostly from cracks and faults

#### **Mitigations:**

- Drill holes to inject cement to seal water
- Elevate the hall by 35 m
- Add a tunnel at the top of the hall to release the water pressure

### **Delayed by ~ 4 years**

![](_page_10_Picture_14.jpeg)

![](_page_10_Picture_15.jpeg)

## JUNO central detector

![](_page_11_Figure_1.jpeg)

### **Acrylic Sphere:** Inner Ø=35.4m Thickness:12cm **Steel Structure:** Inner Ø=40.1m, Outer $\emptyset = 41.1m$ 17716 20-inch PMTs, 25600 3-inch PMTs Water pool: Inner $\emptyset = 43.5m$ , Height: 44m, Depth: 43.5m **2400 20-inch PMTs**

![](_page_11_Picture_9.jpeg)

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

## JUNO central detector

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

- 35.4 m spherical acrylic vessel supported by 41.1 m Stainless Steel structure via 590 supporting bars.
- Steel structure completed except bottom 4 layers
- Acrylic panel production completed
- A special production line for low backgrounds (< 1 ppt U/Th/K)
- Shaping, sanding/polishing, cleaning, machining and protection of panels by PE film, while maintaining high transparency (>96%) and low surface background (<5 ppt U/Th in 50 mm thickness)
- Acrylic vessel construction on-going
- Acrylic built from the top, **17/23 layers finished**, defects repaired

![](_page_12_Picture_12.jpeg)

![](_page_12_Figure_14.jpeg)

![](_page_12_Picture_15.jpeg)

![](_page_12_Picture_16.jpeg)

![](_page_12_Picture_17.jpeg)

## **20 inches PMT**

Micro-Channel Plates (MCPs) instead of dynode:

- IHEP & NNVT jointly developed technologies & prototypes
- Higher collection efficiency
- High Photon Detection Efficiency ~30%, low backgrounds glass, ...
- High production yield, automatic mass production
- Hamamatsu developed 20" Super Bialkali PMTs
- Purchase optimized considering performance, cost, risk, etc.

### **MCP-PMT: 15012**

### **Dynode PMT(Hamamatsu): 5000**

![](_page_13_Figure_10.jpeg)

![](_page_13_Figure_12.jpeg)

![](_page_13_Figure_13.jpeg)

![](_page_13_Figure_14.jpeg)

# Large PMT Instrumentation

All PMTs tested in the Container (integral measurements) Around 2500 tested by scanning station (zone characteristics) All PMTs delivered and their performance tested - OK Water proof potting:

- Required failure rate<0.5%/6 years
- Technology invented, aging and pressurized tests are satisfactory

#### **Implosion protection:**

- Acrylic top & SS bottom
- Final test: no chain reactions

#### Mass production successfully completed

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

Implosion test of PMTs on the module structure

![](_page_14_Picture_14.jpeg)

# Large PMT Electronics

- ~20000 ch., each with 100 m long cable
- **Dynamic range: 1-4000 PE**
- Noise threshold: < 10% of 1 PE
- **Resolution:** < 10% @ 1 PE, <1%@100 PE
- Failure rate: < 0.5%/6 years

![](_page_15_Figure_6.jpeg)

Joint PMT-electronics-DAQ-software test shows that all installed PMTs and related systems work well **Noise level is ~ 0.05 PE**: good grounding and shielding

![](_page_15_Picture_8.jpeg)

### Design

- 1 GHz FADC in an underwater box (3 ch./box), connected to PMTs by water proof connectors and < 2 m long cables
- All cables in corrugated steel pipes for water proof
- **3 HV units** (controlled by GCU)

![](_page_15_Figure_13.jpeg)

![](_page_15_Figure_14.jpeg)

![](_page_15_Picture_15.jpeg)

# **Small 3-inches PMT**

**Goal:** 3% more light, higher dynamic range for muons, uniformity and linearity calibration for large PMTs, ...

Mass production and waterproofing of **26,000 3.1" PMTs (XP72B22) from HZC** Photonics completed, and tested OK

Electronics: 200 underwater boxes, each for 128 PMTs read by ASIC Battery Cards (ABC), each with 8 CatiROC chips

Installation and commissioning under way

![](_page_16_Figure_5.jpeg)

26,000 PMT

all

of

ghlight

Performances hi

![](_page_16_Picture_6.jpeg)

#### System overview: 200 boxes $\times$ 128 PMTs

![](_page_16_Figure_8.jpeg)

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

## **JUNO Veto**

![](_page_17_Picture_1.jpeg)

### **Top tracker (to be installed)**

- Refurbished OPERA scintillators
- 3 layers, ~50% coverage on the top
- $\Delta\theta \sim 0.2^\circ, \Delta D \sim 20 \ cm$

### **Earth Magnetic Field compensation coil**

![](_page_17_Picture_7.jpeg)

### Water Cherenkov detector

- 35 kton water to shield backgrounds from the rock
- Instrumented with 2400 20"-PMTs
- Water pool lining: **5mm HDPE (black)** to keep the clean water and to stop Rn from the rock, will cover with tyvek
- 100 tons/hour water purification system installed. Requirements: U/Th/K<10<sup>-14</sup> g/g, Rn<10 mBq/m<sup>3</sup>, attenuation length> 40 m, temperature 21±1°C

![](_page_17_Picture_13.jpeg)

![](_page_17_Picture_14.jpeg)

![](_page_17_Picture_15.jpeg)

# **Liquid Scintillator Production and Purification**

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

5000 m<sup>3</sup> LAB storage tank

![](_page_18_Figure_4.jpeg)

- LAB + 2.5 g/L PPO + 3 mg/L bis-MSB
- Attenuation length: LAB > 24 m, LS > 20 m.
- Minimum U/Th requirement (for NMO) < 10<sup>-15</sup> g/g, aiming at **10**-17 **g/g** for solar and future 0nββ

remove Rn and O<sub>2</sub>

3) Water extraction to remove radioactive impurities

- All 60 ton PPO delivered, U/Th < 0.1 ppt</li>
- **Bis-MSB** complete production soon (< 5 ppt)
- Plants commissioned individually and jointly
- 20 kt LAB to be delivered, U/Th ~ 1 ppq

![](_page_18_Picture_14.jpeg)

![](_page_18_Picture_15.jpeg)

![](_page_18_Picture_16.jpeg)

![](_page_18_Picture_17.jpeg)

## **OSIRIS: LS Radiopurity Verification before Filling**

![](_page_19_Picture_1.jpeg)

- LS
- 20 tons of LS in **3m x 3m** acrylic vessel, 76 MCP-PMTs, 3m of water shielding → first test run successful
- First batch of JUNO LS filled into the detector on March 11
- U/Th tagging by Bi-Po-214 coincidence, which is now still dominated by  $^{222}Rn \rightarrow$  have to wait several <sup>222</sup>Rn lifetimes (τ=5.5 days) to reach U/Th <10<sup>-15</sup> g/g
- Analysis for <sup>14</sup>C, <sup>210</sup>Po, ... in progress

• A dedicated pre-detector to verify the radioactivity levels of

![](_page_19_Figure_8.jpeg)

# **Calibration and Energy resolution**

![](_page_20_Figure_1.jpeg)

- Energy scale uncertainty <1%
- Reaching desired  $\sigma E < 3\%$  at 1 MeV

### **Methods**

Four systems for 1D, 2D, 3D scan with multiple sources

Calibrate energy scale and non-linearity to better than 1% using y-peaks and cosmogenic <sup>12</sup>B beta spectrum

arXiv:2405.17860

![](_page_20_Figure_9.jpeg)

# **TAO Detector**

### Mail goal: Measure the reactor neutrino spectrum (as a reference to JUNO)

- ⇒ better resolution to reduce fine structure effects and spectrum uncertainties
- ⇒ Improve nuclear database

### 10 m<sup>2</sup> SiPM + 2.8 ton Gd-loaded LS @-50°C

- ⇒ 700k/year@44m from the core (4.6 GW), ~10% bkg
- $\Rightarrow$  Energy resolution: < 2 % / $\sqrt{E}$ , 4500 p.e./MeV
- ⇒ SiPM (> 94% coverage) w/ PDE > 50%
- $\Rightarrow$  Operating at -50°C, dark rate 100k $\rightarrow$ 100 Hz/mm<sup>2</sup>
- $\Rightarrow$  2.8 ton (1-ton FV) new type of Gd-LS for -50°C

### Detector tested (w/ ~100 SiPM tiles/readout out of 4100 in total) at IHEP

- ⇒ Temperature uniformity and stability OK!
- ⇒ Single PE Threshold

Disassembling, to be re-installed in the Taishan Nuclear Power Plant in 2024

#### arXiv:2005.08745

![](_page_21_Picture_15.jpeg)

![](_page_21_Picture_16.jpeg)

![](_page_21_Picture_17.jpeg)

![](_page_21_Picture_18.jpeg)

### **HPK Array**

![](_page_21_Picture_20.jpeg)

### **Physics in JUNO Rich physics programme**

- spectrum, sterile neutrinos.
- Solar neutrinos from <sup>7</sup>Be, pep, CNO and <sup>8</sup>B. Possibly, pp.
- Atmospheric  $\nu_{\mu}/\overline{\nu}_{\mu}$  and  $\nu_{e}/\overline{\nu}_{e}$ : mass ordering,  $\theta_{23}$ .
- SuperNova neutrinos and Diffuse SuperNova Neutrino Background.
- **Geo-neutrinos.**
- **Proton decay.**
- **Other topics:**
- Search for dark matter.
- **Study PMNS matrix unitarity.**
- **Probe Lorentz invariance.**

#### • Reactor $\nu_e$ at short (TAO) and large baseline:oscillation parameters, mass ordering, reactor $\nu_e$

- **Search for physics beyond standard** model and exotic particles.
- And more...

![](_page_22_Picture_16.jpeg)

## **Precision Oscillation Measurement**

![](_page_23_Figure_1.jpeg)

|                                                   | Central Value | PDG2020             | 100 days            | 6 years              | 20 years            |
|---------------------------------------------------|---------------|---------------------|---------------------|----------------------|---------------------|
| $\Delta m_{31}^2 \ (\times 10^{-3} \ {\rm eV}^2)$ | 2.5283        | $\pm 0.034$ (1.3%)  | $\pm 0.021 (0.8\%)$ | $\pm 0.0047 (0.2\%)$ | $\pm 0.0029$ (0.1%) |
| $\Delta m_{21}^2 \ (\times 10^{-5} \ {\rm eV}^2)$ | 7.53          | $\pm 0.18$ (2.4%)   | $\pm 0.074$ (1.0%)  | $\pm 0.024$ (0.3%)   | $\pm 0.017 (0.2\%)$ |
| $\sin^2 \theta_{12}$                              | 0.307         | $\pm 0.013$ (4.2%)  | $\pm 0.0058$ (1.9%) | $\pm 0.0016 (0.5\%)$ | $\pm 0.0010$ (0.3%) |
| $\sin^2 \theta_{13}$                              | 0.0218        | $\pm 0.0007$ (3.2%) | $\pm 0.010$ (47.9%) | $\pm 0.0026$ (12.1%) | $\pm 0.0016$ (7.3%) |

 $sin^2 2\theta_{12}, \Delta m_{21}^2, |\Delta m_{32}^2|$  best measurements in 100 days; precision < 0.5% in 6 years

#### Chin. Phys. C46 (2022) 12, 123001

| $\frac{10^{-1}}{$                                   | Event type                             | Rate [/day]          | Relative rate<br>uncertainty | Sha<br>uncer |
|-----------------------------------------------------|----------------------------------------|----------------------|------------------------------|--------------|
| Global Reactors — Atmospheric NC<br>— Fast Neutrons | Reactor IBD signal                     | 60 <del> 4</del> 7   | -                            |              |
|                                                     | Geo-V's                                | 1.1 🗲 1.2            | 30 %                         | 5            |
| Events U                                            | Accidental signals                     | 0.9 -> 0.8           | 1 %                          | negli        |
| 10 <sup>-4</sup> 1 1.5 2 2.5 3 3.5 4 4.5            | Fast-n                                 | 0.1                  | 100 %                        | 20           |
|                                                     | <sup>9</sup> Li/ <sup>8</sup> He       | 1.6 <del>→</del> 0.8 | 20 %                         | 10           |
| IBD + residual BG                                   | <sup>13</sup> C (α ,n) <sup>16</sup> O | 0.05                 | 50 %                         | 50           |
|                                                     | Global reactors                        | 0 → 1.0              | 2 %                          | 5            |
| nergy [MeV]                                         | 12<br>Atmospheric V <sup>^</sup> S     | 0 → 0.16             | 50 %                         | 50           |

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

# **Neutrino Mass Ordering**

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_2.jpeg)

|                              | Design *                       | Now                            |
|------------------------------|--------------------------------|--------------------------------|
| Thermal Power                | 36 GW <sub>th</sub>            | 26.6 GW <sub>th</sub> (26%     |
| Signal rate                  | 60 /day                        | 47.1 /day ( <mark>22%</mark>   |
| Overburden                   | ~700 m                         | ~ 650 m                        |
| Muon flux in LS              | 3 Hz                           | 4 Hz ( <mark>33%↑</mark> )     |
| Muon veto efficiency         | 83 %                           | 91.6% ( <mark>11%</mark> †)    |
| Backgrounds                  | 3.75 /day                      | 4.11 /day ( <b>10%1</b>        |
| Energy resolution            | 3.0% @ 1 MeV                   | 2.95% @ 1 MeV ( <mark>2</mark> |
| Shape uncertainty            | 1%                             | JUNO+TAO                       |
| $3\sigma$ NMO sens. Exposure | <6 yrs × 35.8 GW <sub>th</sub> | ~6 yrs × 26.6 GW               |

- JUNO NMO median sensitivity:  $3\sigma$  (reactors only) @ ~6 yrs \* 26.6 GWth exposure
- Combined reactor and atmospheric neutrino analysis in progress: further improve the NMO sensitivity

![](_page_24_Figure_6.jpeg)

![](_page_24_Picture_7.jpeg)

## **Solar and Geo-Neutrinos**

![](_page_25_Figure_1.jpeg)

#### 60,000 ES and 600 NC/CC on <sup>13</sup>C

The largest ES + NC+CC(<sup>13</sup>C) sample, <sup>8</sup>B flux can be model-independently measured to 5% in 10 years (SNO 3%)

For most background scenarios, JUNO will reduce the Borexino uncertainty on <sup>7</sup>Be, pep, CNO flux measurement

![](_page_25_Figure_5.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

# **Atmospheric Neutrinos**

![](_page_26_Figure_1.jpeg)

JUNO will be the first to study atmospheric neutrino oscillation with liquid scintillator:  $e/\mu$  separation,  $\nu/\bar{\nu}$  separation,  $\nu$  energy (instead of lepton energy), track direction in LS

- Sensitivity mostly from upward going, e-like sample
- Improving reconstruction and sensitivity
- Plan to install spare PMTs on top wall of the water pool to improve PID and direction reconstruction

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

## **Supernovae Neutrinos**

![](_page_27_Figure_1.jpeg)

- 3 detection channels sensitive to all flavors
- Excellent capability for early warning
- 220 ~ 400 kpc with 50% probability
- pre-SN 1.6 (0.9) kpc
- Alert in 10 ~ 30 ms for typical 10 kpc

![](_page_27_Figure_7.jpeg)

![](_page_27_Figure_8.jpeg)

**Diffuse Supernova Neutrino Background:** 

- S/B ratio improved from 2 to 3.5 with PSD
- Using the reference model:  $3\sigma$  in 3 years and >  $5\sigma$  in 10 years

![](_page_27_Picture_12.jpeg)

# Summary

- JUNO construction near completion, overcoming challenges
- Component quality exceeding the design value, performance may surpass expectations
- Neutrino mass ordering may be known within this decade
- Anticipate groundbreaking results in particle and astroparticle physics from JUNO

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)