

Создание теоретической базы данных сечений редких ядерных процессов, рассчитанных в модели ядерных реакций кваркового уровня CHIPS

Косов Михаил Владимирович, Грачков Алексей Александрович

ФГУП «ВНИИА»

Актуальность теоретической базы данных об сечений нейтрон-ядерных реакций

Сечения многих, особенно редких nA реакций не измерены, а потому не могут быть оценены в рамках той или иной эмпирической модели:

- сечения взаимодействия нейтронов с мишенями редких изотопов;
- сечения реакций с образованием тяжёлых ядерных фрагментов, обладающих наиболее разрушительной ионизирующей способностью;
- анизотропия дифференциальной множественности ядерных фрагментов.

Ионизационные потери различных изотопов в области малых энергий:

- моделирование распределения по скоростям радиоактивных ядерных фрагментов для моделирования доплеровского уширения γ-линий,
- учёт потенциальной щели в изоляторах для расчёта процесса ионизации,
- сечение ион-ионного упругого рассеяния с учётом электронной экранировки.

Теоретическая база данных для неизвестных времён жизни у-переходов.

- эмпирические зависимости для E1, M1, E2 и M2 γ-переходов,
- алгоритм излучения γ-квантов при кварковом обмене между возбуждённым нуклонным кластером (Квазмоном) и холодными нуклонными кластерами, ²
- расчёт возбуждённых состояний ядра и их ү-распадов на кварковом уровне.

Алгоритм моделирования ядерных реакций в модели КИФО (CHIPS)

 $T_{c} = 220.5 M_{i}B$

qq

qq

5Q-квазмон

E,p)

M_N

жёсткая адронизация:

 $M\approx 11 \cdot T_c\approx 2.4 \Gamma \Im B$

. Ε+ξ=Μ_N+k

K=(I

Непертурбативный

физический вакуум

3N-кластер

T=E-M_№

Модель Кирально-Инвариантного Фазового $q\bar{q}$ О Объёма (КИФО, CHIPS – Chiral Invariant Phase Space) рассматривает нуклон как три безмассовых кварка в конфайнменте физического вакуум с температурой T_c . Окружающий нуклон физический вакуум создаёт барьер для обмена кварками.

Обмен кварками одного цвета приводит к сдвигу нуклонов с массовой поверхности и образованию нуклонных *кластеров* в ядре.

N-кластеры способны аккумулировать (Q) энергию, увеличивая число кварков **n** при температуре кипения T_c : $M_Q \approx (2n-1)T_c$. *Квазмон Q* обменивается с окружающими *N-кластерами* кварками одного цвета и снижает свою энергию, выбивая ядерные фрагменты соответствующей энергии.

Наиболее яркие кварковые эффекты в ядерных реакциях

- Множественность пионов при протонантипротонной и е+е-аннигиляции
- Спектр нейтронов при захвате т мезона
- Анизотропия протонных спектров в фото-ядерных реакциях при 60 МэВ

выход тяжёлых ядерных фрагментов

- Спектр нейтронов при захвате µ- мезона
- Температура вакуума Т_с и массы адронов

 $k = (p_{p} + T_{p})/2 (MeV)$

Температура вакуума при аннигиляции

Спектры фрагментов при захвате пионов 🐼

ВНИИА РОСАТОМ

Фотоядерные реакции ниже Δ(3,3) 👩

Спектры фрагментов при захвате мюонов 💦

КИФА/СНІРЅ алгоритм – распадный алгоритм. Он работает быстрее каскадных алгоритмов других моделей (DPMJET, UrQMD, FRITIOF, VENUS).

Температура вакуума Т_с =220.5 MeV 📀 для расчёта масс 1s адронов

- Для q-спинов мезонов <s₁,s₂>=½S(S+1)-½(½+1)=<mark>+¼</mark>
- Мезоны: M₂=2T_c√2=624 МэВ, (3m_ω+m_π)/4=621 МэВ
- Для спинов барионов 2<s₁,s₂>=½S(S+1)-½(½+1)=^{+½}-½ +½ А -½ +½
- Барионы: M₃=2T_c√6=1080 MeV, (m_N+m_Δ)/2=1074 MeV
- Расчёт масс 1s-адронов из лёгких кварков: М.V.Kossov, EPJ, А14, 265 (2002)
- Массы всех 92 1s-адронов послана в журнал
- Массы глюболов (f-мезонов) без цветомагнитных сдвигов близки к M₂, M₃, M₄=1528 МэВ, M₅=1972 МэВ
- T_c может быть третьей мировой константой: $\Delta E=T_c\Delta I$ (I=-S)

 $+\frac{1}{4}M_{2}$

Алгоритм расчёта сечений нейтронядерных реакций с образованием ядерных фрагментов

Для нормировки дифференциальной множественности использовалась **σ**_{in}:

- Генератор событий CHIPS определяет продукты ядерной реакции, которые в эксклюзивных каналах могут быть отсортированы и собраны по типам ядерных фрагментов в многомерные 3N-гистограммы, где N – число фрагментов [p_x,p_y,p_z];
- Ниже порогов отделения фрагментов могут рождаться только ү-возбуждённые остаточные ядра, для которых выбирается ближайший уровень ү-возбуждения и распад последнего фрагмента пересчитывается для выбранной массы ядра А*;
- При формировании инклюзивных спектров все тождественные частицы собираются в один спектр и вычисляются дифференциальные множественности ρ(p)=dn/E/dp, определяющие инклюзивные спектры f(p)=σ_{in}·ρ(p).

Распад ү-возбуждённого ядра моделируется каскадными таблицами RIPL

- Выбор "ближайшего" уровня к полученному моделированием возбуждению может проводиться с учётом ширины и силы соответствующего уровня;
- В ТРТ разрабатываются независимые модели E1, M1, E2 и M2 ү-переходов для оценки неизвестных вероятностей каскадных ү-переходов и их времён жизни.

Разрабатываются модели электронных потерь для эффекта Доплера

• При расчёте эффекта Доплера фиксируется время жизни возбуждённого уровня, и электронные потери определяют по форме доплеровского уширения.

Моделирование доплеровского уширения γ-линий ¹⁶O(n,α) реакции 🥸

На шаге моделирования ион тормозится. При этом используются очень маленькие шаги, замедляющие вычисления. Первый ТРТ алгоритм работал в газовом приближении (без замедления), но теперь решена проблема моделирования замедления на больших шагах:

- 1. Учёт снижения сечения реакции синтеза из-за замедления иона в мишени нейтронного генератора (2022)
- 2. Учёт молекулярных и атомных связей при рассеянии тепловых нейтронов в воде (каротаж скважин, 2023)

3. Учёт торможения ядра при каскадном излучении гамма-квантов – 2024

Адекватное данным сечение реакции ¹⁶O(n, α)¹³C* отсутствовало как в Geant4, так и в базах данных. Оно было сгенерировано моделью ядерных реакций кваркового уровня КИФО (CHIPS). Ширина доплеровской линии зависит от времени жизни γ -уровня и от функции электронных потерь dE/dx среды, в которой происходит перенос возбуждённого остаточного ядра. На приведенном спектре видно, что уровень **3.686 МэВ** имеет две ширины: одну широкую при прямом возбуждении, а вторую узкую в результате ¹² распада долгоживущего уровня **3.853 МэВ** на мягкий γ -квант с энергией 167 кэВ.

Для сравнения приводится Geant4 спектр ү-линий в том же диапазоне

1. Все максимумы Geant4 узкие, то есть соответствуют покоящимся ^{E, MeV} остаточным ядрам без эффекта Доплера. Слева от 3.686 МэВ – плотный набор уровней, а не эффект Доплера, поскольку справа усиления нет.

13

2. Geant4 производит множество максимумов, отсутствующих в эксперименте, но превосходящих по силе реальные максимумы.

Заключение

- 1. Теоретическая база данных КИФО (CHIPS) может восполнить пробел нейтрон-ядерных реакций с рождением тяжёлых ядерных фрагментов.
- 2. Образование ядерных фрагментов, особенно образование α-частиц (гелиевые поры), очень важно для моделирования радиационной стойкости материалов ядерных установок.
- 3. Энергичные ионы элементов, из которых составлен материал, рождаются в упругих и неупругих нейтрон-ядерных рассеяниях.
- 4. В случае выбивания ионов из решётки, и в случае рождения ядерных фрагментов надо повышать точность моделирования потерь энергии в ионных каскадах, особенно для ионов низких энергий.
- 5. Необходимо аппроксимировать все уже имеющиеся и собранные МАГАТЕ экспериментальные данные для dE/dx ионов и разработать методику измерения dE/dx при самых низких энергиях.
- 6. Модель КИФА (CHIPS) проверена в области больших энергий (ЦЕРН), при которых кинематические ограничения не важны; при относительно низких энергиях необходимо провести дополнительную проверку, которая может привести к уточнению модели при низких энергиях.
- 7. Планируется распространить модель КИФА (CHIPS) не только на нейтроны, но и на ү-кванты, и на другие ядерные фрагменты.

Спасибо за внимание

Перспективы усовершенствования функций dE/dx от Geant4 к TPT

16

В этой работе для оценки доплеровского уширения использовалась аппроксимация потерь из Geant4, поскольку в результате α -распада ядро углерода приобретает большую скорость, а моделировать dE/dx пропорциональную скорости легче.

Расчёт шага моделирования до распада и скорости при распаде

Если dE/dx=C·v, то m·dv=C·dx. Если x – расстояние до точки остановки (x=0 и v=0): m·v=C·x. Вычислив время распада t_d , нужно определить расстояние x_d , в которое остаточное ядро перейдёт за время жизни t_d . Подставив v=dx/dt, получим m·dInx=C·dt, то есть время до полной остановки (x=0, v=0) бесконечно. Если радиоактивный ион родился в точке x=m·v/C, то распадётся он через время t_d в точке x_d , так что получаем m·In(x/x_d)=C·t_d \rightarrow x_d=x·exp(-C·t_d/m), и шаг L=x·[1- exp(-C·t_d/m)]. Поскольку x_d=m·v_d/C, где v_d – скорость в точке распада, получаем m·In(v/v_d)=C·t_d, откуда v_d=v·exp(-C·t_d/m).

В случае, если электронные потери пропорциональны другой степени скорости, можно записать dE/dx=C·v^{α}, где закон Линдхарда (LSS модель) соответствует α =1. В этом случае, делая замену $dx = v \cdot dt$, получим $m \cdot dv = C \cdot v^{\alpha} \cdot dt$ или $m \cdot dv^{1-\alpha} = (1-\alpha)C \cdot dt$, то есть **m·v^{1-α}=(1-α)C·(t-t₀).** Если **α<1**, то время остановки до **x=0**, **v=0** (t₀=0) фиксировано $t=m \cdot v^{1-\alpha}/(1-\alpha)/C$. Если $t_d > t$, то ядро успевает остановиться и распадается в покое, а если меньше, то остаётся со скоростью $v_d = [(t-t_d)(1-\alpha)C/m]^{1/(1-\alpha)}$, что можно записать и без t: $v_d = [v^{1-\alpha} - t_d(1-\alpha)C/m]^{1/(1-\alpha)}$. Если же $\alpha > 1$, то, как и в случае $\alpha = 1$ (LSS), время остановки до нулевой скорости бесконечно, и для любых времён t_d будет справедлива та же формула, но записанная в виде $v_d = [v^{1-\alpha} + t_d(\alpha - 1)C/m]^{1/(1-\alpha)}$. Чтобы получить длину шага L=x- x_d , надо проинтегрировать скорость иона по времени L= $\int v(t) dt$ от 0 до t_d : L={[$v^{1-\alpha} + t_d(\alpha-1)C/m$]^{(2- α)/(1- α)- $v^{2-\alpha}$ }·m/C/(α -2). Эта формула справедлива для любого α , но} в случае $\alpha < 1$, при $t_{d} > t$ шаг ограничен точкой остановки $L = v^{2-\alpha} \cdot m/C/(2-\alpha)$. С этого момента радиоактивное ядро покоится и распадается без эффекта Доплера. Видно, что при α≠1 вычисления несколько усложняются, но вычисление шага до распада и 17 скорости при распаде остаются легко рассчитываемыми в один шаг моделирования.

ТРТ аппроксимация измеренных значений dE/dx (МАГАТЕ) в золоте

18

