The Spin Physics Detector (SPD) at NICA

Alexander Korzenev, LHEP JINR on behalf of the SPD Collaboration

LHEP JINR seminar
19 Jan, 2024

SPD project at NICA (JINR, Dubna)

~300 participants from 32 institutes from 15 countries

- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of proton and deuteron
- SPD project was approved by PAC JINR and had its first proto-collaboration meeting in June 2019
- Conceptual Design Report (CDR) was released in January 2021, [arXiv:2102.00442]
- Official birthday of the SPD collaboration in June 2021
- Technical Design Report (TDR) v1 of SPD was released in January 2023, http://spd.jinr.ru

Physics program of SPD

- A.Arbuzov et al, On the physics potential to study the gluon content of proton and deuteron at NICA SPD, Prog.Part.Nucl.Phys. 119 (2021) 103858 [arXiv:2011.15005]
- Probe gluon distributions in production of charmonia, open charm and prompt photons
- V.Abramov et al, Possible studies at the first stage of the NICA collider operation with polarized and unpolarized proton and deuteron beams, Phys.Part.Nucl. 52 (2021) 6 [arXiv:2102.08477]
- Spin effects in elastic scattering and hyperon production, study of multiquark correlation, dibaryon resonances, exclusive reactions, open charm and charmonia near threshold, ...

Accelerator complex NİCA in JINR

SPD experimental hall in winter 2024

 blocks of biological protection and collider elements.

- The detector rail system will be installed upon arrival.
- Biological protection will be installed this year (extension of accelerator tunnel) and will remain until the construction of the SPD detector is completed.

Schematic view of the SPD setup

The total weight is $\sim 1.3 \mathrm{k}$ tons

Detector requirements for the SSA/TMD measurement

Gluon TMD: Charmonia (J/ $/$) production

- Pair of muons from primary vertex to be identified
- Range System (iron interleaved by MDT detectors)
- Thickness of $4 \lambda_{\text {I }}$ or $4.5 \lambda_{\text {I }}$ with ECal

Quark TMD: Light hadron $\pi, \mathrm{K}, \mathrm{p}$ production

- High energy hadron identification ($\mathrm{x}_{\mathrm{F}}>0.3$)
- FARICH (Cherenkov photon detector)
- Better than 3σ separation up to 6 GeV

Gluon TMD: Open charm ($\mathrm{D}^{0, \pm}$) production

- Distinction of D-decay from primary vertex
- Silicon detector (DSSD or MAPS)
- Identification of kaon from D-decay
- TOF and FARICH

Gluon TMD: Prompt photon production

- High energy photons $E>4 \mathrm{GeV}$ to be detected
- Electromagnetic calorimeter (ECal)
- 40 cm long cell $=200$ layers of lead and scintillator
- Thickness of $18.6 \mathrm{X}_{0}$

Comparison of SPD to MPD detector

- Event rate in SPD (~4MHz)
o About 250 ns between bunch interactions => Triggerless DAQ (online filter)
- Low multiplicity events in SPD (~ 10 tracks)
- Muon detector in SPD (Range System)
o Physics of charmonia (J / ψ)
- Tracking and hadron PID in SPD endcaps
o To measure large known asymmetry effects at small polar angles.
- Magnetic field in SPD (1.2 T in center)
o To determine momentum of tracks in endcaps. Uniformity not important

Superconductive solenoid magnet

Control Dewar

The volume of the Dewar tank is enough to cool the magnet offline for about a day without an influx of helium from the outside

Steel cryostat

Outer diameter 4.01 m Inner diameter 3.47 m Thickness 27 cm Length 4.2 m Weight 22 tons

Linear guides used for positioning an electro magnetic calorimeter

Triangular supports are used to suspend the "cold mass".

12 pieces on each side.

Made of fiberglass.

Cooling He pipe welded to the support cylinder

Thermal shield cooled by gaseous He

- 1.1 Tesla field with $\pm 9 \%$ uniformity within $\pm 1.4 \mathrm{~m}$ distance from center (tracking det.)
- Solenoid consists of 3 coils with 750 turns in total (two layer edge-wise winding)
- central coil with $2 \times 75=150$ turns
- 2 side coils with $2 \times 150=300$ turns
- The use of the thermosyphon method for cooling the superconducting coils (natural convection of two-phase helium at 4.5 K)
- It will be constructed in BINP Novosibirsk

Rutherford-type cable made of 8 -strands $\mathrm{NbTi} / \mathrm{Cu}$ superconductor. The cable will be encased in an aluminum stabilizer using a coextrusion process that provides a good bond between aluminum and superconductor in order to ensure quench protection during operation.

Cryostats of superconducting magnets of HEP experiments

Helium system

	Operating parameters	Unit
$\mathbf{1}$	Cooling capacity (for 4.5 K$)$	$100-130 \mathrm{l} / \mathrm{h}$
	Cooling capacity (for 50 K$)$	150 W
2	Temperature of outlet flow	$4.3 \mathrm{~K}(1.05 \mathrm{bar})$
$\mathbf{3}$	Temperature of inlet flow	$4.5 \mathrm{~K}(1.15 \mathrm{bar})$
4	Hydraulic resistance of the SC coil	0.1 bar
5	Cold weight	4000 kg
6	Maximum pressure in pipe	5 MPa
7	Heat load	$60-80 \mathrm{~W}$

Cryogenic system

Range System (RS)

- Purposes: μ identification, rough hadron calorimetry, iron return yoke of the magnet, mechanical support structure of the overall detector
- 20 layers of $\mathrm{Fe}(3-6 \mathrm{~cm})$ interleaved with gaps for Mini Drift Tube (MDT) detectors
- The endcaps must withstand the ~ 100 tonne magnetic force
- Total mass ~ 1000 tons, at least $4 \lambda_{\text {I }}$
- The design will follow closely the one of PANDA
- MDT provide 2 coordinate readout ($\sim 100 \mathrm{kch}$)
- Al extruded comb-like 8 -cell profile with anode wires + external electrodes (strips) perpendicular to the wires

Results of beam tests of RS prototype (10 ton, 4 k ch)

Electromagnetic Calorimeter (ECal)

- Purpose: detection of prompt photons and photons from π^{0}, η and χ_{c} decays
- Identification of electrons and positrons
- Number of radiation lengths $18.6 \mathrm{X}_{0}$
- Total weight is $40 t($ barrel $)+28 t($ endcap $)=68 t$
- Total number of channels is $\sim 23 \mathrm{k}$
- Energy resolution is $\sim 5 \% / \sqrt{ } \mathrm{E}$
- Low energy threshold is $\sim 50 \mathrm{MeV}$
- Time resolution is $\sim 0.5 \mathrm{~ns}$

- 200 layers of lead $(0.5 \mathrm{~mm})$ and scintillator (1.5 mm)
- 36 fibers of one cell transmit light to $6 \times 6 \mathrm{~mm}^{2}$ SiPM
- Moliere radius is $\sim 2.4 \mathrm{~cm}$

Setup of 4 modules

- Each module consist of 9 cells of $4 \times 4 \mathrm{~cm}^{2}$
- All 36 cells were fully tested

Cell assembled of:

- 1.5 mm Scintillator
- 0.3 mm Lead
- 200 layers

Scintillator composition:

- Polysterene
- 1.5\% Paterphenyle
- 0.05\% POPOP

Test results with cosmic particles

- Light detection by new NDL SiPm Series EQR15 (intrinsic epitaxial layer as a quenching resistor (EQR))
- For now, old modules with a cross section of $4 \times 4 \mathrm{~cm}^{2}$, left over from MPD production, are being used
- A matrix form for new scintillator production $\left(40 \times 40 \times 1.5 \mathrm{~mm}^{3}\right)$ was ordered. A 4 -set mold will produce 4 scintillator plate per minute.
- The relative energy resolution for MIP: $\mathrm{dE} / \mathrm{E}=9.6 \%$ which corresponds to 240 MeV of electron signal and consistent with MC prediction
- Spectra of all 36 cells were tested and give consistent results.

Detectors inside ECal (tracking + PID)

- All endcaps are loaded one-by-one presumably by hand
- No need to divide the endcap detectors into two halves

For the case when assembling will not be allowed in the experimental hall due to MPD runs, it can be done outside the aria.

Barrel of Straw Tracker (ST)

- Main tracker system of SPD
- Barrel is made of 8 modules with 30 double-layers oriented as $z,+3^{\circ},-3^{\circ}$
- Maximum drift time of 120 ns for $\varnothing=10 \mathrm{~mm}$ straw
- Straw tubes are made of a PET foil that is ultrasonic welded to form a tube
- Spatial resolution of $150 \mu \mathrm{~m}$
- Expected DAQ rate up to several hundred $\mathrm{MHz} /$ tube (electronics is limiting factor)
- Number of readout channels ~26k
- Extensive experience in straw production in JINR for several experiments: ATLAS, NA58, NA62, NA64; prototypes for: COZY-TOF, CREAM, SHiP, COMET, DUNE.

Power frame for the Straw-barrel

- Contract for the preparation of the conceptual design of the power frame was signed with CRISM earlier this year
- Engineers of CRISM were in charge for the development and production of the ECal power frame in MPD
- The frame will be made of carbon fiber composite material UMT49-12K-EP (Rosatom)
- A preliminary design, which takes into account all the tolerances imposed by the Technical Assignment, was prepared

- One ST endcap contains 8 modules: $X,+45^{\circ},-45^{\circ}, Y$
- One module contains 288 tubes in total, which are arranged in two layers shifted by half a tube
- Total number of tubes in two endcaps is

288 tubes $\times 16$ modules $\times 2$ endcaps $=9216$ tubes

- The thickness of one module is 30 mm
- Eight coordinate planes are mounted together on a rigid flat table to form a 240 mm thick rigid block
- One straw is made by winding two "kapton" tapes forming a tube with $\varnothing=9.56 \mathrm{~mm}$

Progress on Straw-endcap prototype

End-plugs for $\varnothing=9.54 \mathrm{~mm}$ tubes were designed and a 400 of them were manufactured using a 3 D printer

- Aluminum sheets were purchased in the spring. The frame is being manufactured in LHEP workshop
- Tubes of the required diameter have been manufactured
- The issue of electronics remains open

Application of ST for the $\mathrm{dE} / \mathrm{dx}$ analysis (PID)

Straw of SPD

- Number of primary ionized e- per straw is about the same as per pad in TPC $=>$ similar abilities for identification
- Using TDC+ADC for readout. See VMM3 as an example

$\varnothing=10 \mathrm{~mm}$ straw: $\mathrm{S}=78 \mathrm{~mm}^{2}$

TPC of MPD (for comparison)

Inner pads: $5 \mathrm{~mm} \times 12 \mathrm{~mm}=\mathbf{6 0} \mathbf{m m}^{2}$, Outer pads: $5 \mathrm{~mm} \times 18 \mathrm{~mm}=\mathbf{9 0} \mathbf{m m}^{\mathbf{2}}$

- For the 1 -st stage of experiment ST will be the only PID detector in SPD for $\pi / K / p$.
- Only the low momentum region

Time-of-flight (TOF) detector

Schematic view of self-sealed MRPC
(B.Wang et al, JINST 15 (2020) 08, C08022)

- Purpose: $\pi / \mathrm{K} / \mathrm{p}$ discrimination for momenta $\leqslant 2 \mathrm{GeV}$, determination of t_{0}.
- Time resolution requirement <60 ps.
- Self-sealed Multigap Resistive Plate Chambers (MRPC) are the base option.
- DAQ electronics is under discussion. Analog of NINO chip v1 is in production.
- Number of readout channels is $\sim 12.2 \mathrm{k}$

21

Focusing Aerogel RICH (FARICH) detector

Principle of detector operation

- Purpose: identification of high momentum particles ($p \gtrless 1.5 \mathrm{GeV}$) which cannot be discriminated by TOF
- Requirement: π / K separation at $6 \mathrm{GeV} / \mathrm{c}$ up to 3.5σ
- Disk-shaped detector in endcap with an area of $2 \mathrm{~m}^{2}$
- Multilayer focusing aerogel radiator produced in BINP
- Development of Multi-anode MCP-PMT is ongoing in Russia (so far PMT of Hamamatsu, Photonis, Photek)
- The FARICH concept was published in 2005
- It was realized as a detector in Belle-II (KEK) in 2017

Inner Tracker System of SPD

Micro pattern gaseous detector for the 1 -st phase of SPD

(commissioning by ~ 2028)

Silicon Vertex Detectors (SVD) for the 2-nd phase of SPD

(one of two options, commissioning by ~2035)

Double-Sided Silicon Detector (DSSD)

Main purpose of the detector is to reconstruct the position of D-meson decay vertices ($\sigma_{\mathrm{z}}=76 \mu \mathrm{~m}$).

Silicon wafer size $63 \times 93 \mathrm{~mm}^{2}$, thickness $300 \mu \mathrm{~m}$, orthogonal strips on p^{+}and n^{+}sides, p^{+}pitch 95 $\mu \mathrm{m}, \mathrm{n}^{+}$pitch $282 \mu \mathrm{~m}$, produced by ZNTC Russia, spatial resolution 27 (81) $\boldsymbol{\mu m}$ for $\mathrm{p}^{+}\left(\mathrm{n}^{+}\right)$side.

DSSD modules are assembled in ladders with carbon fiber support, 3 layers ($\mathrm{R}=5,13,21 \mathrm{~cm}$) in barrel 74 cm long, 3 layers in each endcap, readout electronics at two ends, $\sim 108 \mathrm{k}$ channels.

Monolithic Active Pixel Sensors (MAPS)
Main purpose of the detector is to reconstruct the position of D-meson decay vertices ($\sigma_{\mathrm{z}}=51 \mu \mathrm{~m}$).

Silicon wafer size $30 \times 15 \mathrm{~mm}^{2}$, thickness $50 \mu \mathrm{~m}$, pitch $28 \mu \mathrm{~m}, 512 \times 1024$ pixels, sensor and FEE sections are integrated in a single chip, so far is not produced in Russia, spatial resolution $5 \mu \mathrm{~m}$.

MAPS chips are assembled in staves with carbon fiber support, 4 layers $(\mathrm{R}=4,10,15,21 \mathrm{~cm})$ with the external layer 127 cm long, FE electronics is part of the chip, $\sim 10^{9}$ pixels for readout.

DSSD:
N.Zamyatin,
O.Tarasov

Silicon Vertex Detector (SVD)

Progress in developing a cylindrical MM prototype in LNP

- Cylindrical MMs have so far been produced only in Saclay for CLASS12, R=10 cm.
- MM production stages for $\operatorname{SPD}(\mathbf{R}=\mathbf{5} \mathbf{~ c m})$:
- Photolithography to produce RO board
- Bending and fixation on template
- Gluing force elements (longbeams, arcs)
- Gluing cathode plain and hermetization
- Finalization (cut-out technological detail, add gas connectors, etc)
- Stable signal ($\mathrm{U}_{\text {gain }}=525 \mathrm{~V}, \mathrm{G}=10^{4}$)

Detectors for local polarimetry and luminosity control

Beam-Beam Counter (BBC)
Plastic scintillator tiles

$$
\mathrm{z}= \pm 1.4 \mathrm{~m}
$$

V.Ladygin
A.Baldin

Progress on Beam-Beam-Counter (BBC)

The BBC prototype options:

>CAEN FERS-5200 readout system
>scintillator prototype tiles (thickness 10 mm)

- Tyvek covered vs chemical mating >scintillation optical fibers (WLS and clear)
-KURARAY vs Saint-Gobain Crystals
-CKTN Med vs OK-72
>SENSL SiPMs (MicroFC-x0035-SMT)
- $3 \times 3 \mathrm{~mm}^{2}$ (for tests) vs $\mathbf{1 x} 1 \mathrm{~mm}^{2}$

Currently, the selection of materials for the build of 7 detector prototype sector tiles is
V.Ladygin, A.Tishevsky underway

Progress on Zero Degree Calorimeter (ZDC)

- Energy resolution for neutrons $(50 \div 60) \% / E \oplus(8 \div 10) \%$. Time resolution $150 \div 200 \mathrm{ps}$. Neutron entry point spatial resolution 10 mm .
- Beam pipe sections for the ZDC cite are received in JINR October. Now under tests by vacuum group. The place for ZDC is fine and well acceptable for installation.
- For the initial test a single ZDC plane with 31 scintillator tile (no tiles in the corners) is being developed.
o DAQ electronics: A5202 based on Citiroc-1A chip produced by WeeROC. It has 64 channels which provide SiPM bias, amplification and readout.

Data Acquisition System (DAQ)

Data Acquisition System (DAQ)

- Bunch crossing every $76 \mathrm{~ns} \rightarrow$ crossing rate 12.5 MHz
- At maximum luminosity of $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ the interaction rate is 4 MHz
- No hardware trigger to avoid possible biases
- Raw data stream $20 \mathrm{~GB} /$ s or $200 \mathrm{~PB} /$ year
- Online filter to reduce data by oder of magnitude to $\sim 10 \mathrm{~PB} /$ year

Data volume vs time

- Preparation for the experiment. Monte Carlo simulation from 2024 to 2028 will provide 2 PB per year. Total per stage: 10 PB.
- Stage I: running at low luminosity of the NICA collider. Monte Carlo simulation and real data taking from 2028 to 2030 will provide 4 PB per year. Reprocessing: 2 PB per year. Total per stage: $18 \boldsymbol{P B}$.
- Upgrade of the setup for operation at high luminosity. Monte Carlo simulation from 2031 to 2032 will provide 2 PB per year. Reprocessing: 2 PB per year. Total per stage: $\boldsymbol{8} \boldsymbol{P B}$.
- Stage II: running at maximum design luminosity of the NICA collider. Monte Carlo simulation and real data taking from 2033 to 2036 will provide 20 PB per year. Reprocessing: 10 PB per year. Total per stage: $\mathbf{1 2 0} \boldsymbol{P B}$.

Beam-beam counter
Straw tracker end-cap

Stage II: Fully assembled setup

- p-beam: $\sqrt{ } \mathrm{s}=27 \mathrm{GeV}, \mathcal{L}=10^{32} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ with interaction rate of $\sim 4 \mathrm{MHz}$

Conclusions

- NICA collider will start operation in heavy ion mode in early 2025
- Possibility of running (polarized) proton beams in NICA is currently being studied
- SPD (Spin Physics Detector) is a universal facility with the primary goal to study unpolarized and polarized gluon content of p and d
- 4π detector will be equipped with silicon detector, straw tracker, TOF and FARICH for PID, calorimetry, muon system and monitoring detectors
- SPD Technical Design Report was released at the beginning of 2023
- More information could be found at http://spd.jinr.ru

Creating of polarized infrastructure	Upgrade of polarized infrastructure			
0	+2	+4	+6	+8

backup

MoU signed

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan
2 NRC "Kurchatov Institute" - PNPI, Gatchina
3 Samara National Research University (Samara University), Samara
4 Saint Petersburg Polytechnic University St. Petersburg
5 Saint Petersburg State University, St. Petersburg
6 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow
7 Tomsk State University, Tomsk
8 Belgorod State University, Belgorod
9 Lebedev Physical Institute of RAS, Moscow
10 Institute for Nuclear Research of the RAS, Moscow
11 National Research Nuclear University MEPhI, Moscow
12 Institute of Nuclear Physics (INP RK), Almaty
13 Institute for Nuclear Problems of BSU, Minsk
14 NRC "Kurchatov Institute", Moscow (NRC KI)
15 Higher Institute of Technologies and Applied Sciences, Havana

SPD compared to other spin experiments

Main present and future gluon-spin-physics experiments

Experimental facility	SPD $@ N I C A ~$	RHIC	EIC	AFTER @LHC	LHCspin
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed target	fixed target
Colliding particles \& polarization	$p^{\uparrow}-p^{\uparrow}$ $d^{\uparrow}-d^{\uparrow}$ $p^{\uparrow}-d, p-d^{\uparrow}$	$p^{\uparrow}-p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow},{ }^{3} \mathrm{He}^{\uparrow}$	$p-p^{\uparrow}, d^{\uparrow}$	$p-p^{\uparrow}$
Center-of-mass energy $\sqrt{s_{N N}}, \mathrm{GeV}$	$\leq 27(p-p)$ $\leq 13.5(d-d)$ $\leq 19(p-d)$	63,200,	$20-140(e p)$	115	115
Max. luminosity, $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	$\sim 1(p-p)$ $\sim 0.1(d-d)$	2		1000	up to
Physics run	>2025	running	>2030	>2025	>2025

- Access to intermediate and high values of x
- Low energy but collider experiment (compared to fixed target). Nearly 4π coverage
- Two injector complexes available \Rightarrow mixed combinations $\mathrm{p}^{\uparrow}-\mathrm{d}$ and $\mathrm{p}-\mathrm{d} \uparrow$ are possible

Spin dynamics in the SPD solenoidal field 1T

Luminosity reduction due to displacement of IP from the SPD center

IP is displaced from the SPD center

- Formation of polarized proton beams in the NICA collider is presently under study
- $\mathrm{T}_{1} \approx 2 \mathrm{~h}, \mathrm{~T}_{2} \approx 1 \mathrm{~h}, \tau_{\mathrm{L}} \approx 6 \mathrm{~h}, \tau_{\mathrm{P}} \approx 3$ day
- Effective luminosity $\mathrm{L}_{\mathrm{eff}} \approx 0.6 \mathrm{~L}_{0}$, maximum luminosity $\mathrm{L}_{0} \approx 10^{23} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- All bunches in one ring will have the same polarization ($\sim 70 \%$)
- Spin navigator (SN) is based on weak solenoids with $B L \leq 0.6 \mathrm{Tm}$
- It takes ~ 1 s for Spin-Flipper based on SN to reverse the polarization

Operation mode with spin flippers

|xxx| - spin-flipper switching-on, no data taking
| | - spin-flipper switching-off, no data taking

Calorimeter suspension scheme in CMS/LHC

Model calculation of quark orbital angular momentum

$$
L_{z}^{q}=\int d x d^{2} \vec{k}_{T} d \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{T}\right)_{z} \rho_{L U}\left(\vec{b}_{\perp}, \vec{k}_{T}, x\right)
$$

Light-cone constituent quark model (LCCQM) C.Lorce, B.Pasquini, X.Xiong, F.Yuan, arXiv:1111.4827

Wigner distribution of unpolarized (U) quark in a longitudinally (L) polarized nucleon

Functions describing the nucleon structure

Transverse momentum-dependent (TMD) distributions

- 3D partonic structure of hadron in momentum space (coordinate position of partons is obtained from GPD)
o Transverse motion of quarks results in correlations between the orbital angular momentum and the spin of quarks for nucleons at different polarization states
- TMDs give rise to spin and azimuthal asymmetries

$$
\vec{k}_{\perp} \text { and } \hat{z} \text { are vectors }
$$

h and H are pseudoscalars
\vec{S}_{\perp} and \vec{S}_{\perp} are axial vectors

- Hadronic tensor is decomposed into a set of basis tensors multiplied by scalar structure functions (TMDs)
- One needs to find out the basis tensors assuming hermiticity, parity and time-reversal invariances.
o Only 8 independent combinations to construct a scalar up to terms quadratic in $k_{T} \Rightarrow$ Leading twist distributions (densities) in the context of parton model

Transverse momentum-dependent (TMD) parton distributions

Transverse momentum-dependent (TMD) parton distributions

- Can be presented as multipoles in momentum space ($\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}$)

Transverse momentum-dependent (TMD) parton distributions

\vec{z}		Quark polarization		
		Unpolarized, f	Longitudinal, g	Transverse, h
				$\begin{aligned} & \text { (Q) } \\ & h_{1}^{\perp}\left(x, k_{T}^{2}\right) \\ & \text { Boer-Mulders } \end{aligned}$
				$\begin{aligned} & \text { (9) } 0-5 \\ & h_{1 L}^{\perp}\left(x, k_{T}^{2}\right) \\ & \text { Worm-Gear L (K-M) } \end{aligned}$
			$\Leftrightarrow 0$	
			$g_{1 T}\left(x, k_{T}^{2}\right)$ Worm-Gear T Kotzinian-Mulders	Pretzelocity $h_{1 T}^{\perp}\left(x, k_{T}^{2}\right)$

- Subindex " 1 " indicates the leading twist (twist-2)
- Subindices " L " and " T " indicate polarization of nucleon
- Superscript " \perp " indicates the presence of transverse momenta with uncontracted Lorentz indices
- All 8 twist-2 functions can be interpreted as densities
- 16 functions in twist-3. No more probabilistic interpretation
* Transversity: $h_{1}=h_{1 T}+\frac{k_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp}$
- Large SSA observed in many inclusive pion production experiments: $p^{\wedge} p \rightarrow \pi X$

$$
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

- Effect is almost independent of energy

- Sivers effect explains the asymmetry assuming opposite contribution of u and d quarks: $\operatorname{sgn}\left(f_{1 T}^{\perp u}\right)=-\operatorname{sgn}\left(f_{1 T}^{\perp d}\right)$ Anselmino et al, hep-ph/9503290, hep-ph/0509035
- Even though effect is large, its description is complicated

Phenomenological description of SSA of $p^{\dagger} p \rightarrow \pi X$ processes

- Generalized parton model (GPM) can be considered as a natural phenomenological extension of the usual collinear factorization scheme, with the inclusion of spin and k_{T} effects through the TMDs

$$
\hat{f}_{q / p^{p}}\left(x, k_{T}\right)=f_{q / p}\left(x, k_{T}\right)+\frac{1}{2} \Delta^{N} f_{q / p}\left(x, k_{T}\right) \mathbf{S} \cdot\left(\hat{\mathbf{P}} \times \hat{\mathbf{k}}_{\mathbf{T}}\right)
$$

- Both Sivers (partonic distributions) and Collins (fragmentation processes) effects contribute to A_{N}

$$
A_{N}=\frac{\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Sivers }}+\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Collins }}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

- There is no consistent description (global fit) of all $\mathrm{p} \uparrow \mathrm{p} \rightarrow \pi \mathrm{X}$ data available so far
- Contribution of Sivers mechanism for quarks is largely dominant in the forward region
- Opposite sign of $\pi+$ and π - asymmetries can indicate an opposite sign of Sivers function of u and d quarks
- Gluons can be studied in the central and backward regions of x_{F}
- New data of SPD over a wide rage of p_{T} and x_{F} will provide better constrains for the fit

Fixed target experiments (Eur.Phys.J.C14(2000)427)

Collider experiment BRAHMS (Phys.Rev.Lett.101(2008)042001)

Generalized Transverse Momentum Distribution (GTMD)

- Average momentum P and momentum transfer to nucleon Δ

$$
P=\frac{p+p^{\prime}}{2}, \quad \Delta=p^{\prime}-p
$$

- Average momentum fraction of quark: $x=k^{+} / P^{+}$
- Fraction of longitudinal momentum transfer to nucleon (skewness)

$$
\xi=\frac{p^{+}-p^{\prime+}}{p^{+}+p^{\prime+}}=-\frac{\Delta^{+}}{2 P^{+}}
$$

$$
\Delta^{2}=-\frac{4 \xi^{2} m^{2}+\vec{\Delta}_{\perp}^{2}}{1-\xi^{2}}
$$

- Generalized quark-quark correlator for a spin- $1 / 2$ hadron

- Complete parametrization using 16 complex-valued twist-2 GTMDs

$$
X\left(x, \xi, \vec{k}_{\perp}^{2}, \vec{k}_{\perp} \cdot \vec{\Delta}_{\perp}, \vec{\Delta}_{\perp}^{2} ; \eta\right)
$$

Definitions of OAM

kinetic vs canonical

$$
\operatorname{GTMD}\left(x, \xi, \vec{k}_{T}, \vec{\Delta}_{\perp}\right)
$$

$$
L_{z}^{c a n}=-\int d x d^{2} k_{T} \frac{\vec{k}^{2}}{M^{2}} F_{1,4}^{\perp}\left(x, 0, \vec{k}^{2}, \overrightarrow{0}^{2}\right)
$$

8 in twist-2
16 in twist-3
8 in twist-4

$$
L_{z}^{c a n}=-\int d x d^{2} k_{T} \frac{\vec{k}^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x \vec{k}^{2}\right)
$$

$$
L_{z}^{k i n}=\frac{1}{2} \int d x x[H(x, 0,0)+E(x, 0,0)]-\frac{1}{2} \int d x \tilde{H}(x, 0,0)
$$

Example of TMD and GPD processes

4-momentum transferred from probe to nucleon $\Delta=\left(p^{\prime}-p\right) / 2=0 \quad$ (forward limit)
Diagonal matrix element of quark-quark operator

$$
\langle p, \Lambda| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \Gamma \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi^{q}\left(\frac{z}{2}\right)|p, \Lambda\rangle
$$

GPD

$$
\gamma^{*}(q)+p(p) \rightarrow \gamma\left(q^{\prime}\right)+p\left(p^{\prime}\right)
$$

$$
p\left(p_{1}\right)+p\left(p_{2}\right) \rightarrow p\left(p_{1}^{\prime}\right)+p\left(p_{2}^{\prime}\right)+\gamma\left(q^{\prime}\right)
$$

Off-forward, skewed functions integrated over k_{T}

$$
\Delta=\left(p^{\prime}-p\right) / 2 \neq 0
$$

Off-diagonal matrix element of quark-quark operator

$$
\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \Gamma \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi^{q}\left(\frac{z}{2}\right)|p, \Lambda\rangle
$$

Gluon probes at SPD

Charmonia

Prompt photon

- A.Arbuzov et al., On the physics potential to study the gluon content of proton and deuteron at NICA SPD, arXiv:2011.15005
- Measurement of total and differential cross sections (p_{T} and y dependencies) in charm production to test various models
- Tests of TMD factorization
- Gluon Sivers function via SSA in gluon-induced processes
- Linearly polarized gluons in unpolarized nucleon (B-M function)
- Non-nucleonic degrees of freedom in deuteron
- Gluon polarization $\Delta \mathrm{g}$ with longitudinally polarized beams (fraction of nucleon spin carried by gluons)
- Gluon transversity in deuteron (assuming spin flip ± 2, thus does not exist in nucleons)

