Efficiency corrections on photon and neutral pion flow

Oleg Golosov^{1,2} Evgeniya Nekrasova¹ Dmitry Peresunko¹ Dmitry Blau¹

¹NRC "Kurchatov Institute" ²NRNU MEPhI

MPD Cross-PWG meeting 23/01/2024

Reminder

- Two possibilities for photon reconstruction:
 - Signal in EMC
 - e⁺e⁻ pairs from TPC for converted photons
- Three methods for π^0 reconstruction:
 - Calorimeter (both photons reconstructed with EMC)
 - Hybrid (EMC + converted photon)
 - Conversion (two converted photons)

Conversion method gives significantly higher momentum resolution but much lower reconstruction efficiency.

Analysis details

- UrQMD, Bi+Bi @ 9.2 GeV (request 25)
- Analysis procedure implemented in MpdConvPi0 class
- Output from EP, PID and V0Maker wagons is used
- Results are shown for the analysis train request #5

Primary* photon MC spectra**

* produced within 1 cm from primary vertex of the collision **in UrQMD most photons come from π^0 decays

Reconstructed primary photon spectra

* produced within 1 cm from primary vertex of the collision **in UrQMD most photons come from π^0 decays

Primary photon reconstruction efficiency

* produced within 1 cm from primary vertex of the collision **in UrQMD most photons come from π^0 decays

Primary photon reconstruction efficiency

- Calorimeter efficiency drops at midrapidity and low p_T. Tuning cluster energy cuts might help?
- Very low efficiency for conversion method.

Efficiency correction

 p_T -y differential efficiency correction may be applied using weights w=1/eff during:

- filling of TProfiles (smoothed efficiency can be used),
- postprocessing of TProfiles.

Both methods were checked in the closure test:

- Sample y, pT, and v_{12} according to distributions from the analysis
- Apply calorimeter efficiency map from the analysis
- Apply weights during filling of TProfile or postprocessing.

Efficiency correction closure test

- Little effect on v₁ rapidity dependence.
- Both methods succeed in correcting p_{T} dependence.

Efficiency correction closure test

- Stronger effect on v_2 rapidity dependence.
- Both methods effective.

Effect of efficiency correction on photon and π^0 flow measurement

Notations at flow plots

- Primary photon photon produced in the vicinity of the primary vertex (DCA_{vtx}<1cm)
- **MCprim** primary photons
- MC all photons
- **Calo TrueVtx** clusters with the main contribution from a primary photon
- **Conv TrueVtx** track pairs descending from a primary photon

Photon $v_1(y)$

- Subtle effect of efficiency correction on $v_1(y)$
- Better agreement for conversion method. Less contamination by secondary photons?

True vertex photon $v_1(y)$

- Subtle effect of efficiency correction on $v_1(y)$
- Better agreement for conversion method.
 Less contamination by secondary photons?

Photon $v_2(y)$

- Small effect of efficiency correction on $v_2(y)$ esp. including low p_{τ}
- Conversion method requires more statistics.

Photon $v_{1,2}(p_T)$

- Small effect of efficiency correction on measured $v_{12}(p_T)$
- Conversion method requires more statistics.

True $\pi^0 v_1(y)$

- Efficiency correction seems to be small but significant, esp. with low p_T .
- Hybrid method is closer to primary π^0 while calorimeter measurements reproduce the curve with all simulated π^0

True $\pi^0 v_{1,2}(p_T)$

- Small effect of efficiency correction on measured $v_{12}(p_T)$
- Limited agreement of calorimeter measurement
- Conversion method requires more statistics.

Summary

- Effect of efficiency corrections on photon and π^0 flow measurements is small but still helps to improve agreement with the model input
- Steep drop of photon reconstruction efficiency with calorimeter at low p_T - try tuning cluster selection?
- In certain cases efficiency corrections do not allow to reproduce model input - the cause for the discrepancies needs to be investigated

Backup

True $\pi^0 v_2(y)$

