Inclusive π^0 for polarimetry: comparison between two approaches

Katherin Shtejer Díaz

Physics & MC Meeting 24.01.2024

Physics & MC Meeting, 24.01.2024

Simulation

- □ SpdRoot version 4.1.5.1
- $\Box pp @ \sqrt{s} = 27 \text{ GeV}$
- \Box Particle generator: Pythia 8 (number of events: ~ 100 M)
- Minimum Bias
- □ Vertex assumed at (0, 0, 0) → Gaussian smeared: $\sigma_z = 30 \ cm$ and $\sigma_{x,y} = 0.1 \ cm$

data branches

Based on realistic reconstruction

- IT \rightarrow ActivateBranch("RCVertices");
- IT \rightarrow ActivateBranch("MCTracks");
- IT \rightarrow ActivateBranch("RCEcalParticles");
- IT \rightarrow ActivateBranch("RCEcalClusters");
- IT \rightarrow ActivateBranch("MCParticles");

Analysis

(Create all possible combinations of $\gamma\gamma$ in the endcaps)

Analysis

Physics & MC Meeting, 24.01.2024

Inv. mass spectra in one azimuthal sector, $\Delta \phi = [0 - 45] deg$

Mass windows: $(0.09 \div 0.18)$ GeV/ c^2 <u>×10³</u> <u>×10³</u> <u>×10³</u> dN/dM₇₇ (GeV/c²)⁻¹ (GeV/c^{2).1} ີ່ (ວິ 1800 (C) 1600 (C) SpdRoot-4.1.5.1, pp@√s = 27.0 GeV SpdRoot-4.1.5.1, pp@√s = 27.0 GeV -SpdRoot-4.1.5.1, pp@√s = 27.0 GeV $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_F = [0.1 - 0.2]$ $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_e = [0 - 0.1]$ $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_e = [0.2 - 0.3]$ dN/dM_m ^и. WP/Np - 10 min -- 10 min -- 10 min --Without reco info Without reco info Without reco info 400 With reco info With reco info With reco info 250 1200 $x_{\rm F} = [0.1 - 0.2]$ $x_{\rm F} = [0.0 - 0.1]$ $x_{\rm F} = [0.2 - 0.3]$ 1000 300 200 800 150 200 600 100 400 100 50 200 0 0 0 0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 M_w (GeV/c²) M_w (GeV/c²) M_{yy} (GeV/c²) 220 220 200 (GeV/c²)⁻¹ (GeVc²⁾⁻¹ 00008 00002 . 25000 SpdRoot-4.1.5.1, pp@√s = 27.0 GeV SpdRoot-4.1.5.1, pp@√s = 27.0 GeV SpdRoot-4.1.5.1, pp@√s = 27.0 GeV $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_e = [0.3 - 0.4]$ $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_{_{\rm F}} = [0.4 - 0.5]$ (Ge/ $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_e = [0.5 - 0.6]$)^ж 180 МР/Ир 160 - 10 min -- 10 min -₹20000 - 10 min --Without reco info Without reco info P260000 Without reco info Ş With reco info With reco info With reco info 140 50000 15000 $x_{\rm F} = [0.3 - 0.4]$ $x_{\rm F} = [0.4 - 0.5]$ $x_{\rm F} = [0.5 - 0.6]$ 120 40000 100 10000 80 30000 60 20000 5000 40 10000 20 - $\gamma \gamma \gamma$ 0 0 0 0.05 0.1 0.15 0.25 0.35 0.25 0.35 0.2 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.3 0 M_{yy} (GeV/c²) M_{yy} (GeV/c²) M_{γγ} (GeV/c²) 2500 الالا 8000 کے SpdRoot-4.1.5.1, pp@ vs = 27.0 GeV SpdRoot-4.1.5.1, pp@/s = 27.0 GeV SpdRoot-4.1.5.1, pp@√s = 27.0 GeV SpdRoot-4.1.5.1, pp@/s = 27.0 GeV 50 $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_F = [0.6 - 0.7]$ Gev $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_{\mu} = [0.9 - 0.10]$ é G $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_{\mu} = [0.7 - 0.8]$ $\pi^0 \rightarrow \gamma \gamma, \phi = [0^\circ, 45^\circ], x_F = [0.8 - 0.9]$ ق ب 7000 300 10 min - 10 min - 10 min - 10 min 2000 Without reco info Without reco info Without reco info Without reco info 250 With reco info With reco info - With reco info With reco info 5000 1500 200 $x_{\rm F} = [0.8 - 0.9]$ $x_{\rm F} = [0.9 - 1.0]$ = [0.7 - 0.8] $x_{\rm F} = [0.6 - 0.7]$ 4000 150 1000 20 3000 100 2000 500 50 1000 0^E 0 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.35 M,, (GeV/c2) M_{vv} (GeV/c²) M_{vv} (GeV/c² M_{vv} (GeV/c²)

Physics & MC Meeting, 24.01.2024

Physics & MC Meeting, 24.01.2024

$A_{\rm N}$ in the ECAL endcap

$A_{\rm N}$ in the ECAL endcap

 $A_{\rm N} vs. x_{\rm F}$

Taking three experimental 3 points ($0.3 \le x_F < 0.6$):

 $\frac{\Delta P}{P} = 0.0998 \rightarrow 9.9 \% \text{ (Experiment E704)}$

The error of the beam polarization in the experiment **E704** is estimated in **10%** (FERMILAB-Pub-91/15-E[E581,E704]) Estimation of the statistical accuracy of the beam polarization measurement, with $pp \rightarrow \pi^0 X$ at $\sqrt{s} = 27$ GeV, in SPD ECAL endcaps.

E_{γ} thresholds

number of events: $\sim 280\ 000$

Efficiency

number of events: 280 000

- The accuracy of the beam polarization have been estimated with two approaches: one based on the realistic reconstruction of photons from the clusters in SpdRoot, and the other is based in MC-truth + energy smearing.

- More statistics needs to be collected in order to finished the comparison between both approaches and estimate better the expected accuracy of the polarimetry based on the inclusive π^0 in the ECAL-endcaps.