GRADIENT BOOSTED DECISION TREE FOR PARTICLE IDENTIFICATION PROBLEM

ALEXANDER AYRIYAN

SPD Physics and MC meeting N37

24 JANUARY 2023

Identification Problem of Charged Particles

- In Machine Learning terms PID can be considered as classification task (Supervised learning).
- Let

 $= m_0 eX$

- **X** is the input space (particle characteristics such as: **dE/dx**, **m2**, **q**, **P**, etc)
 - **Y** is the output space (particle species such as: $\mathbf{\pi}$, \mathbf{k} , \mathbf{p} , etc.)
- Unknown mapping exists

•
$$m: X \rightarrow Y$$
,

• for values which known only on objects from the finite training set

•
$$X^n = (x_1, y_1), ..., (x_n, y_n),$$

• Goal is to find an algorithm a that classifies an arbitrary new object $x \in X$

•
$$a: X \rightarrow Y$$
.

 $\Gamma^{\mu}_{\tau v} = O_{\tau}$

 $m_{\lambda} = m_0 \exp(i \lambda t)$

 $L = -m_{\lambda}c'$

 $W = W_{\mu\nu}$

V. Papoyan, A. Ayriyan, A. Aparin, H. Grigorian, A. Korobitsin, A. Mudrokh

MPD APPARATUS AND PID

MPD particle identification (PID) based on

Time-Projection Chamber (TPC) and Time-of-Flight (TOF).

PARTICLE IDENTIFICATION IN MPD EXPERIMENT

 $m_{\lambda} = m_0 \exp(i h)$

 $L = -m_{n}$

 $W_{\mu\nu} = W$

Particle identification can be achieved by using information about **momentum**, **charge**, **energy loss** (TPC) and **mass squared** (TPC + TOF).

DECISION TREES FOR PID

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

W _{µv} = V

Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learner. They can be considered as automated multilevel **cut-based** analysis.

Gradient Boosting

TH TV

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\gamma}$

 $W_{\mu\nu} = V$

Gradient boosting is a machine learning technique which combines

weak learners into a single strong learner in an iterative fashion.

When **weak learners are decision tree**, the resulting algorithm is called **gradient-boosted decision trees**.

BASELINE PID IN MPD - N-SIGMA

PID efficiency and contamination for all tracks (left) and only identified tracks (right) in Bi+Bi collisions at 9.2 GeV

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

$$E^{s} = \frac{N^{s}_{corr}}{N^{s}_{true}} C^{s} = \frac{N^{s}_{incorr}}{N^{s}_{corr} + N^{s}_{incorr}}$$

XGBOOST VS LIGHTGBM VS CATBOOST VS SKETCHBOOST

TV

 $n_{\lambda} = m_0 \exp(-\frac{m_0}{2})$

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp(i \theta t)$

 $L = -m_{\lambda}C$

CÍ

 $W_{\mu\nu} = W$

Subsamples of the two MPD Monte-Carlo productions have been used

	prod05	prod06
Event generator	UrQMD	PHQMD
Transport	Geant 4	Geant 4
Impact parameter ranges	0-16 fm (mb)	0-12 fm
Smear Vertex XY	0.1 cm	0.1 cm
Smear Vertex Z	50 cm	50 cm
Colliding system	Bi+Bi	Bi+Bi
Energy	9.2 GeV	9.2 GeV

track selection criteria: (p < 100) & (|m²| < 100) & (nHits > 15) & (|eta|<1.5) & (dca < 5) & (|Vz| < 100)

TWO STAGES OF THE EXPERIMENTS

Some parameters for the tuning and model evaluation stages

Stage	Learning Rate	Max Number of Iterations	Early Stopping
Tuning	0.05	5 000	200
Model Evaluation	0.015	20 000	500

Results for hyperparameter tuning (after 30 iterations of the TPE algorithm for each GBDT)

Framework	Max. Depth	L2 leaf reg.	Min. data in leaf size	Rows sampling rate
XGBoost	8	2.3	0.00234	0.942
LightGBM	12	0.1	4	0.981
CatBoost	8	3.0	5	0.99
SketchBoost	8	3.0	5	0.99

COMPARATIVE ANALYSIS OF THE ALGORITHMS

COMPARISON WITH N-SIGMA

Efficiency ratio of XGBoost and n-sigma method

COMPARISON WITH N-SIGMA

Efficiency ratio of XGBoost and n-sigma method

XGBOOST MODEL INTERPRETATION. FEATURE IMPORTANCE

dedx charge m2 p beta gPt nHits dca Vx eta theta

0.6

mean(|SHAP value|) (average impact on model output magnitude)

0.8

1.0

1.2

TV

 $m_{\lambda} = m_0 \exp[$

 $L = -m_{\lambda}c$

L = -m

0.0

0.2

0.4

momentum < 1 GeV/c

FINAL EFFICIENCY OF XGBOOST

 $\Gamma^{\mu}_{\tau v} = 0$

 $m_{\lambda} = m_0 \exp$

 $L = -m_{\lambda}c$

 $W_{\mu\nu} = V$

V. Papoyan, A. Ayriyan, K. Gertsenberger, H. Grigorian, S. Merts

BMN Detector

- Magnet SP-41 (0)
- Triggers: BD + SiD (1)
- Forward Silicon (2)
- GEM (3)
- 🔲 ECAL (4)
- CSC 1x1 m² (5)
- □ TOF 400 (6)
- CSC 2x1.5 m² (7)
- 🔲 TOF 700 (8)
- **ZDC (9)**

BMN DETECTOR

$m_{\lambda} = m_0 \exp(i h)$ $L = -m_{\lambda}c$

• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of kaons)

• Number of traks with at least one ToF: approx. 1.4M (27%)

Results

 $m_{\lambda} = m_0 \exp(i h t)$

- Number of trakcs: around 5M
 - (60% protons, 40% pions, less than 1% of kaons)
- Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows identification efficiency more than 80%!

3.0

3.5

2.5

Results

 $a = m_0 ext$

• Number of trakcs: around 5M

(60% protons, 40% pions, less than 1% of kaons)

• Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows identification efficiency more than 80%!

HOW?!

60% 40%

Random efficincy: 80% minus 27% is approx 53%

Results

 $m_{\lambda} = m_0 \exp(i h)$

 $L = -m_{o}$

- Number of trakcs: around 5M
 - (60% protons, 40% pions, less than 1% of kaons)
- Number of traks with at least one ToF: approx. 1.4M (27%)

XGBoost shows 98.3% efficiency for traks with ToF!

