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Introduction

Neutrino physics, is related with a wide spectrum of physical
problems, including the astrophysical ones. The most prominant e�ect
in neutrinos passing through matter is related with resonance
ampli�cation of oscillations (MSW e�ect), which solves the solar
neutrino problem.
Neutrino can interact with electromagnetic �eld due to anomalious

magnetic moment and present-day interest for this subject is related
�rst of all with search of new physics.
Most justi�ed way to describe mixing and oscillations phenomena in

neutrinos system is the Quantum Field Theory (QFT) approach, and
the necessary element of QFT description is the neutrino propagator.

Here we biuld a spectral representation of neutrino propagator in
matter moving with constant velocity or in constant homogenious
magnetic �eld. A spectral representation was discussed earlier for
dressed fermion propagator in theory with parity violation (Kaloshin,
Lomov EPJ (2012)) and for matrix propagator with mixing of few
fermionic �elds (Kaloshin, Lomov IJMP (2016)).



Propagator in moving matter and spin projectors

In media there exist two 4-vectors: momentum of particle p and
matter velocity u. Most general expression for inverse propagator

S(p, u) = G−1 = s1I + s2p̂+ s3û+ s4σ
µνpµuν +

+s5iε
µνλρσµνuλpρ + s6γ

5 + s7p̂γ
5 + s8ûγ

5, (1)

where si are scalar function.
We will solve the eigenvalue problem for inverse propagator

SΨi = λiΨi. (2)

As a starting point it is convenient to introduce γ-matrix basis with
simple multiplicative properties.
Let us introduce the 4-vector zµ, which is linear combination of two
vectors p, u and has properties of fermion polarization vector:

zµpµ = 0, z2 = −1. (3)



Propagator in moving matter and spin projectors

Orthogonal to momentum combination is

zµ = b (pµ(up)− uµp2), (4)

where b is the normalization factor, b = [p2((up)2 − p2)]−1/2.
Then one can construct the generalized o�-shell spin projectors:

Σ± =
1

2
(1± γ5ẑn̂), Σ±Σ± = Σ±, Σ±Σ∓ = 0, (5)

where nµ = pµ/W, W =
√
p2.

One can see that Σ± commute with all γ-matrices in inverse
propagator (1)

[Σ±(z), S] = 0. (6)

Multiplying the inverse propagator S(p, u) (1) by unit matrix

S = (Σ+(z) + Σ−(z))S ≡ S+ + S−, (7)

one obtains two orthogonal terms S+, S−.



Propagator in moving matter and spin projectors

One more useful property of Σ±:

�under their observation� (i.e. in S+, S− terms) γ-matrix structures
may be simpli�ed. Namely: γ-matrices, which contain the matter
velocity uµ may be transformed to the set of four matrices without
velocity: I, p̂, γ5, p̂γ5.
For example, one can rewrite the term û as a linear combination p̂
and ẑ and to use the projector property (Σ+ · γ5ẑn̂ = Σ+):

Σ+û = Σ+(a1p̂+ a2ẑ) = Σ+(z)(a1p̂−
a2
W
p̂γ5). (8)

Tnen it's convenient to introduce the o�-shell momentum orthogonal
projectors:

Λ± =
1

2
(1± n̂), nµ =

pµ

W
, W =

√
p2 (9)



Propagator in moving matter: basis

Having the momentum Λ± and spin projectors Σ±, one can build the
basis (R-basis), which will be used below in the eigenvalue problem

R1 = Σ−Λ+, R5 = Σ+Λ+,

R2 = Σ−Λ−, R6 = Σ+Λ−,

R3 = Σ−Λ+γ5, R7 = Σ+Λ+γ5,

R4 = Σ−Λ−γ5, R8 = Σ+Λ−γ5. (10)

The inverse propagator (1) may be written in this basis as

S(p, u) =

4∑
i=1

RiSi(p
2, pu) +

8∑
i=5

RiSi(p
2, pu), (11)

where these two sums are orthogonal to each other.



Propagator in moving matter: basis

Multiplicative properties of the R-basis (10) are presented in Table 1,
where column elements multiply from left the row elements.

Òàáëèöà: Multiplicative properties of the matrix basis (10)

R1 R2 R3 R4 R5 R6 R7 R8

R1 R1 0 R3 0 0 0 0 0
R2 0 R2 0 R4 0 0 0 0
R3 0 R3 0 R1 0 0 0 0
R4 R4 0 R2 0 0 0 0 0

R5 0 0 0 0 R5 0 R7 0
R6 0 0 0 0 0 R6 0 R8

R7 0 0 0 0 0 R7 0 R5

R8 0 0 0 0 R8 0 R6 0

So, the eigenvalue problem for inverse propagator (11) is separeted
into two di�erent problems: one for R1..R4 and another for R5..R8.
Every problem has two di�erent eigenvalues.



Spectral representation of propagator

Let us recall that the term spectral representation of linear hermitian
operator Â means the following (see textbook of Messia)

Â =
∑

λi|i〉〈i| =
∑

λiΠi, (12)

which contains the eigenvalues λi and eigenprojectors Πi = |i〉〈i|.

Â|i〉 = λi|i〉. (13)

Orthonornality of the vectors leads to orthogonality of projectors

ΠiΠk = δikΠk. (14)

If an operator is not hermitian, to build a spectral representation one
needs to solve two eigenvalue problems: left and right ones.
We want to construct a spectral representation for inverse propagator
of general form (1), (11), so we should solve the eigenvalue problem

SΠi = λiΠi. (15)



Spectral representation of propagator

After solving we get the spectral representation of inverse propagator
in a matter:

S(p, u) =

4∑
i=1

λiΠi. (16)

If the eigenprojectors set is the complete orthogonal system, then
propagator is easily obtained by reversing of (16)

G(p, u) =

4∑
i=1

1

λi
Πi, (17)

and looks as a sum of single poles, accompanied by corresponding
orthogonal projectors.



Spectral representation of propagator in matter

The use of R-basis (10) simpli�es essentially solution of eigenvalue
problem.
So, the eigenstate problem for �rst quartet of basis elements(

4∑
k=1

RkSk

)
·

(
4∑
i=1

RiAi

)
= λ

(
4∑
i=1

RiAi

)
(18)

coinsides with the eigenstate problem for dressed vacuum propagator
with parity violation (Kaloshin, Lomov EPJ (2012)). The presence of
matter leads only to appearence of spin projector in (10) and
modi�cation of scalar coe�cients.



Spectral representation of propagator in matter

Repeating the algebraic operations from (Kaloshin, Lomov EPJ
(2012)) , we have answer for eigenvalues and eigenprojectors:

λ1,2 =
S1 + S2

2
±
√(S1 − S2

2

)2
+ S3S4 ,

Π1 =
1

λ2 − λ1

(
(S2 − λ1)R1 + (S1 − λ1)R2 − S3R3 − S4R4

)
, (19)

Π2 =
1

λ1 − λ2

(
(S2 − λ2)R1 + (S1 − λ2)R2 − S3R3 − S4R4

)
,

λ3,4 =
S5 + S6

2
±
√(S5 − S6

2

)2
+ S7S8 ,

Π3 =
1

λ4 − λ3

(
(S6 − λ3)R5 + (S5 − λ3)R6 − S7R7 − S8R8

)
, (20)

Π4 =
1

λ3 − λ4

(
(S6 − λ4)R5 + (S5 − λ4)R6 − S7R7 − S8R8

)
.

Recall that the indexes 1, 2 refer to S− (i.e to �rst quartet in (11),
and 3, 4 to contribution S+.



Spectral representation of propagator in matter

The introduced by us four-vector zµ (4) plays role of the complete
polarization axis and all eigenvalues are classi�ed by the projection of
spin onto this axis. In contrast to vacuum, this axis is not arbitrary.
As it will be seen from discussion of SM case, the projection on this
axis is not conserved in general case.



Neutrino propagator in matter (SM)

In the case of SM a fermion propagator in matter looks like:

S(p, u) = p̂−m− αû(1− γ5), (21)

where α is some constant. For example, in case of electron neutrino

α(νe) =
GF√

2
(ne(1 + 4 sin2 θW ) + np(1− 4 sin2 θW )− nn),

where ne, np, nn are densities of matter particles.



Neutrino propagator in matter (SM)

The solutions of the eigenvalue problem (15) in this case have the
form:

λ1,2 = −m±W
√

1 + 2K+,

λ3,4 = −m±W
√

1 + 2K−, (22)

Π1,2 = Σ− · 1

2

[
1± n̂ 1 +K+ − γ5K+

√
1 + 2K+

]
,

Π3,4 = Σ+ · 1

2

[
1± n̂ 1 +K− − γ5K−√

1 + 2K−

]
. (23)

Notation: K± = −α
(

(pu)±
√

(up)2 − p2
)
/p2.



Neutrino propagator in matter (SM)

In case of SM it is easy to verify that the spin projection on the axis
of complete polarization is not conserved. The Hamiltonian is de�ned
by Dirac operator (21)

H = p0 − γ0S. (24)

We can use a known zeroth commutator

[R,S] = 0, R = γ5ẑn̂, (25)

for simple calculation of commutator R with Hamiltonian

[R,H] = γ0[S,R] + [γ0, R]S = [γ0, R]S, (26)

which may be reduced to [γ0, R]. With use of the standard
representation of γ-matrices we have

R =

(
σv −iσξ
−iσξ σv

)
, v = n0z− z0n, ξ = [z× n]. (27)



Neutrino propagator in matter (SM)

If to require [γ0, R] = 0, we come to condition ξ = 0, i.e.

ξ ≡ [z× n] = bW [p× u] = 0. (28)

In this case the found polarization vector zµ (4) takes the form

zµ =
1

W

(
|p|, p0 p

|p|

)
, (29)

which corresponds to helicity state of fermion, but the o�-shell one
since W 6= m.
In general case we have

[Σ±, S] = 0, but [Σ±, H] 6= 0



The rest matter

In this case, according to Eq. (28), spin projection is concerved and
polarization vector zµ corresponds to helicity state.
Straight calculation gives

Σ± =
1

2

(
1±Σ

p

|p|

)
, Σ = γ0γγ5. (30)

Eigenvalues:

λ1,2 = −m±W
√

1− 2α(E + |p|)/W 2, (31)

λ3,4 = −m±W
√

1− 2α(E − |p|)/W 2. (32)

Thus, for the rest matter the well-known fact ( D. Mannheim (1988),
J.Pantaleone (1992) ) is reproduced that neutrino with de�nite
helicity has a de�nite law of dispersion in matter.



The rest matter

If some eigenvalue is vanished, we obtain a dispersion relation �
energy and momentum connection. We have for λ1,2 = 0

E2 − 2αE −m2 − p2 − 2α|p| = 0, (33)

E1,2 = α±
√

(|p|+ α)2 +m2, (34)

and for λ3,4 = 0:

E2 − 2αE −m2 − p2 + 2α|p| = 0, (35)

E3,4 = α±
√

(|p| − α)2 +m2, (36)

Well-known expressions



Neutrino propagator in magnetic �eld

We found that in moving matter there exists an axis of complete
polarization zµ, and corresponding spin projectors commute with the
propagator.
A similar situation arises for neutrino in a magnetic �eld.

An inverse propagator of a neutral fermion with an anomalous
magnetic moment µ in a constant external electromagnetic �eld:

S = p̂−m− i

2
µσαβFαβ , σαβ =

1

2
[γα, γβ ]. (37)

In the case of a magnetic �eld, it takes more customary form:

S = p̂−m+ µΣB, Σ = γ0γγ5. (38)

Having electromagnetic �eld tensor and 4-momentum, we can
construct a polarization vector zµ (z2 = −1 and zµp

µ = 0):

zµ = bεµνλρFνλpρ, b = (p20B
2 − (pB)2)−1/2. (39)



Neutrino in magnetic �eld

Using this vector we can construct a spin projector:

Σ± =
1

2
(1± γ5ẑ). (40)

It is easy to see that the spin projectors commute with the inverse
propagator (38). In the case of magnetic �eld:

zµ = b((Bp), p0B), b = (p20B
2 − (Bp)2)−1/2 (41)

and matrix γ5ẑ looks as

R ≡ γ5ẑ = b(γ5γ0(Bp) + p0γ0(ΣB)), R2 = 1. (42)

After this, it is easy to see that [S,Σ±] = 0.
Further we can apply the same trick that was used for matter: �under
observation� of the spin projector, the gamma-matrix structures are
simpli�ed.



Neutrino in magnetic �eld
Again:

S = (Σ+(z) + Σ−(z))S ≡ S+ + S−. (43)

Since [S,R] = 0, two matrices have a common eigenvector:

SΨ = λΨ, γ5ẑΨ = σΨ, σ = ±1. (44)

The eigenvector of the operator R is obvious: Ψ± = Σ±Ψ0, therefore
the system looks like this:

S±Ψ± = λΨ±, γ5ẑΨ± = ±Ψ±. (45)

Since the eigenvalues of the matrix R are equal to ±1, from (42) we
can �nd the useful relation

(ΣB)Ψ± =
1

p0
(γ5(pB)± γ0 1

b
)Ψ±. (46)

Then, in analogy with the case of matter, in the S± contributions the
γ-matrix structure can be transformed. Instead of (38) we get

S± = Σ±(z)
[
p̂−m+

µ

p0
(γ5(pB)± γ0 1

b
)
]
. (47)



Neutrino in magnetic �eld

Let us recall that for covariant matrix of the form

S = aI + bp̂+ cγ5 + dp̂γ5 (48)

solutions of the matrix eigenvalue problem are known.
The inverse propagator in the external �eld (38), (47) is non-covariant
(in particular, it contains γ0), but for algebraic problem this is not so
important. Therefore, if we rede�ne the vector pµ in S±, we can get
rid of γ0 and use the ready answer for eigenvalues and eigenprojectors.
So, we can introduce �4-vector�

pµ± = (p0 ± µ

bp0
, p) (49)

and after this, the inverse propagator takes the form:

S± = p̂± −m+ µγ5
(Bp)

p0
, (50)

in which there are only I, p̂± and γ5 matrix.



Neutrino in magnetic �eld

After this simpli�cation, we can use general formulas (19) :

λ±1 = −m+

√
W 2
± +

µ2

p20
(Bp)2, λ±2 = −m−

√
W 2
± +

µ2

p20
(Bp)2, (51)

Π±1 =
Σ±

2

(
1− 1

A±
(p̂± +

µ(Bp)

p0
γ5)
)
, (52)

Π±2 =
Σ±

2

(
1 +

1

A±
(p̂± +

µ(Bp)

p0
γ5)
)
. (53)

Notations: W± =
√
p2±, A± =

√
W 2
± + µ2(Bp)2/p20.

If the eigenvalue is vanishing, we can obtain the well-known dispersion
law for movement of anomalous magnetic moment in magnetic �eld
(I.M. Ternov, V.G. Bagrov, A.M. Khapaev. JETP (1965))

E2 = m2 + p2 + µ2B2 ± 2µ
√
m2B2 + B2

⊥. (54)

Here ± corresponds to di�erent signs in (50), i.e. to terms S± in
propagator, which are accompanied by spin projectors Σ±.



Neutrino in magnetic �eld

The spectral representation of the inverse propagator with found
eigenvalues and eigenprojectors can be written as:

S =

2∑
i=1

λ+i Π+
i +

2∑
i=1

λ−i Π−i . (55)

So, in constant magnetic �eld all eigenvalues are classi�ed by the spin
projection on the �xed axis z (41). The inverse propagator (38) can
be connected with the Dirac Hamiltonian

S = γ0(p0 −HD), HD = αp + βm+ µγ0(ΣB). (56)

Using the zero commutator of the matrix R = γ5ẑ with the inverse
propagator

0 = [R,S] = γ0[HD, R] + [R, γ0](p0 −HD), (57)



Neutrino in magnetic �eld

we can reduce the case to the commutator [R, γ0]. Calculating it in
the standard representation of gamma-matrices, we have

[γ5ẑ, γ0] =

(
0 2z0

2z0 0

)
, z0 = b (Bp). (58)

So we see that the projection of the spin on the axis of complete
polarization (39) is conserved only in case of a transverse magnetic
�eld.



Summary

So, we have constructed a spectral representation for neutrino
propagator

in matter, moving with constant 4-velocity uµ;

in external magnetic �eld B = const

Starting point: eigenvalue problem for inverse propagator S

S Ψ = λ Ψ.

As a result, we have representation of propagator G = S−1

G =
∑
i

1

λi
Πi

In both cases there exists the �xed 4-axis of polarization zµ

[Σ±(z), S] = 0.

In both cases projection is not conserved (only in special cases)

[Σ±(z), ĤD] 6= 0.



Summary

Presence of such axis simpli�es essentially the problem.
As for eigenvalues of inverse propagator S, they are classi�ed
according to projection on this �xed axis

λ±i

Therefore, all laws of dispersy in media also separated into two classes

E±i (p)



Summary

After all:

We have very simple and convenient approach for propagation of
fermion in media;

Spectral representation ⇔ Diagonalization

The approach can be applied to problem of mixing of few fermion
�elds;

There are some interesting questions, conserning to role of the
found axis of complete polarization in spin dynamics.



Thank you for attention!



Details for rest matter

Π1 =
1

4
(1−Σ

p

|p|
)
(

1 +
n̂

B+
[1− α(E + |p|)

W 2
(1− γ5)]

)
, (59)

Π2 =
1

4
(1−Σ

p

|p|
)
(

1− n̂

B+
[1− α(E + |p|)

W 2
(1− γ5)]

)
, (60)

Π3 =
1

4
(1 + Σ

p

|p|
)
(

1 +
n̂

B−
[1− α(E − |p|)

W 2
(1− γ5)]

)
, (61)

Π4 =
1

4
(1 + Σ

p

|p|
)
(

1− n̂

B−
[1− α(E − |p|)

W 2
(1− γ5)]

)
, (62)

where B± =
√

1− 2α(E ± |p|)/W 2.



Spectral representation of matrix of general form

In order to build a spectral representation of the matrix S of general
form, one needs to solve two eigenvalue problems.
Left eigenvalue problem:

Sψ = λψ (63)

and right one:
φTS = φTλ. (64)

Here S is matrix of dimension n and ψ, φ are the columns of this
dimension.
Let us indicate the main properties of these problems.

The spectra of the left and right problems coinsides. Indeed, the
eigenvalues of the left problem are de�ned by equation
det(S − λE) = 0, as for spectrum of the right � it is de�ned by
transpose matrix det(S − λE)T = 0.



Spectral representation of matrix of general form

Orthogonality of eigenvectors. Let us write down two equations

Sψi = λiψi. (65)

φTk S = φTk λk. (66)

Let us multiply (65) by φTk from the left, (66) by ψi from the
right and subtruct one equation from another. We have

0 = (λi − λk)φTk ψi, (67)

i.e. eigenvectors of left and right problems φk, ψi are orthogonal
at i 6= k.

φTk ψi = ψTi φk ≡ (ψi, φk) = 0 at i 6= k (68)

One can require the orthonormality of these two sets of vectors

(ψi, φk) = δik. (69)



Spectral representation of matrix of general form

Having solutions of both left and right problems with the
property (69), one can build matrices of the form

Πi = ψiφ
T
i , i = 1 . . . n, (70)

which are the set of orthogonal projectors.

ΠiΠk = δikΠk (71)

Note that the projectors Πi (eigenprojectors) are the matrix
solution of both left and right eigenvalue problems.

In particular case of hermitian matrix S, solutions of left and
right problems are related as follows

φi = ψ∗i (72)

and eigenprojectors look like:

Πi = ψiψ
†
i , i = 1 . . . n. (73)



Spectral representation of matrix of general form

Having solutions of left and right problems, one can represent matrix
in a form

S =

n∑
i=1

λiΠi =

n∑
i=1

λiψiφ
T
i . (74)

This is a spectral representation of a general form matrix, which
includes solutions of both left ψi and right φi eigenvalue problem.


