Recent results from PHENIX at RHIC

V. Riabov for the PHENIX Collaboration

PHENIX at RHIC

Detectors:

- ✓ Central spectrometers ($|\eta| < 0.35, 2x90^{\circ}$): DC, PC, TOF, RICH, EMC, VTX
- ✓ Muon spectrometers (1.2 < $|\eta|$ < 2.2, 360⁰): MuTr, MuID, RPC
- ✓ Forward detectors (1 < $|\eta|$ < 4, 360⁰): FVTX, BBC, ZDC → triggering, event plane

PHENIX finished data taking in 2016 (Run-16)

✤ Data samples (p+p, p+A and A+A) taken at different collision energies in the last years of the detector operation are actively analyzed and bring a wealth of new experimental results

Outline

✤ Low-p_T direct photon production in small and large systems:

- ✓ photon enhancement in pAu@200
- ✓ new measurements of photons in CuCu@200, AuAu@39, and AuAu@62
- ✓ scaling of photon production in A+A collisions at RHIC-LHC energies
- Flow in small systems:
 - ✓ correlations between initial geometry and momentum anisotropy in p/d/3He+Au
 - ✓ energy dependence of flow in d+Au
- Heavy flavor production:
 - \checkmark J/ ψ production in small and large systems
 - measurement of separated charm and bottom

Direct photon production

Direct photon puzzle

Phys.Rev. C94 (2016) no.6, 064901

- Simultaneous description of the large photon yields and flow is a challenge for theoretical models
- Similar situation at the LHC
- Systematic studies vs. collision system and energy are required

New results, pp@200 & pAu@200

- New pp@200 reference & fit
- Clear enhancement of the photon yield in central pAu@200 with respect to N_{coll}-scaled pp@200
- ✤ R_{pA} > 0 at low momentum, described by models assuming formation of the QGP droplets in pAu@200

New results, CuCu@200

arXiv:1805.04066

Improve our knowledge of the direct photon production in dependence on the system size in the region of small N_{part}

Clear excess yield of direct photons over the binary scaled p+p in two centrality bins

 \clubsuit p_T spectra and dN/dy are consistent with Au+Au data at similar N_{part}

Exponential fits:

- T = 285 ± 53(stat) ± 57(syst) MeV (MB)
- $T = 333 \pm 72(stat) \pm 45(syst) MeV (0-40\%)$

New results, AuAu@62 & AuAu@39

Improve our knowledge of the direct photon production in dependence on collision energy

- Substantial direct photon yield at $p_T < 3$ GeV/c at both energies
- In AuAu@62 observe increase of the photon yields with centrality
- Exponential fits: T = 214±26(stat)±45(syst) MeV (62 GeV); T = 176±27(stat)±70(syst) MeV/c (39 GeV)

Spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

♦ Spectra in A+A collisions at different energies and centralities as well as pQCD curves are normalized by $(dN_{ch}/d\eta)^{1.25}$:

- ✓ separation by energy at high momentum
- ✓ nearly perfect scaling at low momentum

Scaling of low-p_T **photon yields**

♦ Photon yields are integrated at $p_T > 1$ GeV/c
→ dominated by thermal photons

☆ A+A:

✓ common trend for integrated yields with $dN_{ch}/d\eta$ at different centralities and energies

✓ integrated photon yields grow faster than multiplicity, α = 1.25

✤ p+p:

integrated pQCD curves have similar slope

✤ p/d+Au:

✓ another trend for small systems, suggests the possible turn on of thermal radiation

Direct photons: summary

- Observation of universal scaling for photon yields in A+A collisions at RHIC-LHC
 Derror photon production poor the phone transition to be drapic phone?
 - \rightarrow large photon production near the phase transition to hadronic phase?
- ♦ Observation of low-p_T photon enhancement in central p+Au collisions
 - \rightarrow consistent with formation of the QGP droplets in hydro evolution

Flow in small systems

Geometry engineering and energy scan

Phys.Rev. C93 (2016) no.4, 044910

- Observation of large particle flow in A+A collisions at RHIC and LHC energies has been interpreted to indicate formation of a strongly-coupled QGP with properties of the nearly perfect fluid
- Similar flow signatures have also been observed in high-multiplicity p+p and p+A collisions, first at the LHC and later at RHIC → formation of sQGP?
- Systematic study of various observables in p+p and p+A collisions is needed to understand the system evolution
- ♦ Geometry scan → relation between initial geometry / system size and final state momentum anisotropies
- ♦ Energy scan (d+Au) → relation between initial temperature / lifetime of the medium and the collectivity

Geometry engineering $-v_2$, v_3 of charged hadrons

Geometry engineering is a unique capability of RHIC

- $\bigstar v_2 (^{3}\text{He}+\text{Au}) \sim v_2 (\text{d}+\text{Au}) > v_2 (\text{p}+\text{Au})$
- $v_3 (^{3}\text{He}+\text{Au}) > v_3 (d+\text{Au})$
- \rightarrow initial geometry transforms in the final state momentum anisotropy
- \rightarrow what is the mechanism of the transformation?

v₂, v₃ of charged hadrons – model comparison (hydro)

arXiv:1805.02973

 v_2 and v_3 in three systems are simultaneously described by hydrodynamic models:

- ✓ both models use η /s=0.08, MC Glauber initial conditions, 2+1D viscous hydrodynamic evolution
- ✓ different hadronic rescattering packages: B3D(SONIC), UrQMD(iEBE-VISHNU)
- \clubsuit Same models describe the production spectra

 \rightarrow strong evidence for quark-gluon plasma droplets in high-multiplicity collisions of small systems

v₂, v₃ of charged hadrons – model comparison (AMPT)

✤ AMPT:

- MC Glauber initial conditions
- ✓ Strings melt to partons
- Partonic transport (partonic cross section σ part = 1.5 mb)
- Haronization parton coalescence
- Hadronic rescattering (ART package)
- * Decent consistency with v_2 and v_3 in three systems, but only at low momentum

* AMPT calculations do not describe large and small systems with a consistent set of parameters

v₂, v₃ of charged hadrons – model comparison (CGC)

- Model explains data via initial state color correlations computed in the Color Glass Condensate effective field theory (CGC EFT)
- * Provides a competitive explanation for the v_2 data
- ♦ Describes v_3 in ³He+Au, but overestimates that in d+Au and p+Au
- ✤ Predicts that v₂ will be identical between systems when selecting on the same event multiplicity → not supported by data

Geometry engineering $-v_2$ of identified hadrons

♦ Mass ordering for v_2 is observed in central p/d/³He + Au collisions

 p_T < 1.5</th>
 ≈ 1.5 > 1.5

 v_2 $\pi > p$ $\pi = p$ $\pi < p$

✤ Ordering is more prominent in d/³He+Au collisions

v₂ of identified hadrons – model comparison (hydro & AMPT)

- \clubsuit Low p_T :
 - mass ordering is reproduced by hydro and AMPT models
 - Mass ordering is not sensitive to hadronic rescattering in hydro models and is totally driven by rescattering in AMPT

• Higher p_T :

- ✓ AMPT does not describe data, but reproduces the mass splitting
- ✓ Mass ordering is driven by hadronic rescattering in hydro models and by partonic coalescence in AMPT

 \rightarrow mass dependence of v_2 is best described by hydrodynamic models

 \rightarrow alternative explanations exist

v_2 of identified hadrons – n_q scaling

♦ Measurements for identified hadrons follow the n_q scaling within uncertainties → similar to A+A

✤ Better agreement in d/³He+Au collisions

 \rightarrow strengthens the case for QGP droplets

Energy scan – charged hadrons

Phys.Rev. C96 (2017) no.6, 064905

(neither included in systematic uncertainties)

✤ Hydro reproduces data at 200 & 62.4 GeV and under predicts data at 39 & 19.6 GeV

Charged hadrons – comparison to AMPT

★ Comparison to AMPT: AMPT v_2 {Parton Plane}: ← Flow AMPT v_2 {EP}: ← Flow ⊗ Non-flow

Strong v_2 signal even at 19.6 GeV ... interpretation is complicated by non-flow

Measured signal is inconsistent with non-flow only! (according to AMPT)

Flow in small systems - summary

- ✤ Geometry scan:
 - \checkmark initial state momentum correlations are disfavored by data (v_3)
 - ✓ final state anisotropy = initial geometry + final state Interactions
 - ✓ mechanisms of transformation is not fully constrained
 - the whole variety of results is well (and uniquely) described by hydrodynamic model calculations, which suggests formation of the QGP droplets
- Energy scan:
 - ✓ observe evidence of the collective flow even at the lowest energy of $√s_{NN}$ = 19 GeV
 - interpretation of results, especially at lower energies and higher momenta, is complicated by significant non-flow contributions

Heavy flavor production

Probing nuclear matter with heavy flavor

- Produced at early stage of the collision ($m_c \sim 1.3 \text{ GeV}$, $m_b \sim 4.5 \text{ GeV}$)
- Can be described by pQCD calculations
- Experimental observables:
 - ✓ leptons and di-leptons from semileptonic decays of heavy flavor hadrons
 - \checkmark bound states of heavy flavor quarks (J/ ψ , Υ etc.)

✤ pp:

- ✓ no nuclear matter
- ✓ test pQCD model calculations
- ✓ baseline reference for heavier collision systems

✤ p+A:

 understanding initial (nPDF, Cronin, CGC, parton energy loss) and final state effects (breakup, co-movers)

✤ A+A:

hot (parton energy loss in plasma, flow) & cold nuclear matter effects

Nuclear modification, $R_{AA}(c \rightarrow e) \& R_{AA}(b \rightarrow e)$ in AuAu@200

AuAu@200, MinBias

- Suppression of charm and bottom is separated, better seen in 0-10%
- Consistent with expectations from flavor dependent energy loss in the sQGP:

 $\checkmark \Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$

Flow, $v_2(c \rightarrow e) \& v_2(b \rightarrow e)$ in AuAu@200

• Charm flows, $v_2^c > 0$, flow is smaller than for charged hadrons, mind decay kinematics!

- ♦ Indication of bottom flow, $v_2^b \ge 0$, although consistent with '0' within large experimental uncertainties
- $V_2^{\ b} < V_2^{\ c}$
- Consistent with the LHC results in PbPb@2.76

Flow, $v_2(c/b \rightarrow \mu)$ in dAu@200, 0-20%

First measurement of flow for HF-leptons in p+A collisions at RHIC

Heavy flavor flows in central dAu@200 collisions:

✓ 3.22 σ (2.16 σ) or 99.93% (98.61%) confidence level for positive v₂ at backward (forward) rapidity

Heavy flavor correlations

Angular correlations of heavy flavor leptons probe the heavy flavor production mechanisms:

- ✓ LO flavor creation (FC) strong back-to-back peak
- ✓ NLO flavor excitation (FE) and gluon splitting (GS) broader azimuthal angle distributions

✤ Relative contribution of different production mechanisms depends on collision energy:

✓ role of NLO processes increases with energy

HF di-muon (1.2 < |y| < 2.2) correlations in pp@200

- Di-muon pairs from two muon spectrometers
- -3 -2 -I η=0 I 2 3
 When the sign of the second stributions:
 - ✓ high mass region (3.5-10.0 GeV/c²) of like-sign pairs is dominated by bottom
 - \checkmark high mass region (4.8-15.0 GeV/c²) of unlike-sign pairs is dominated by Drell-Yan
 - ✓ intermediate mass region (1.5-2.5 GeV/c²) of unlike-sign pairs is dominated by charm
- $\boldsymbol{\diamondsuit}$ Simultaneous fitting of like-sign and unlike-sign spectra $% \boldsymbol{P}_{T}$ in mass & \boldsymbol{p}_{T}
- Cocktails describe data quite well

30

Bottom cross section from angular correlations in pp@200

- Consistent with previous results, smaller uncertainty
- Consistent with FONLL within large uncertainties, x2 the central FONLL value

HF di-muon (1.2 < |y| < 2.2) correlations in pp@200 - charm

- Comparison with PYTHIA6 (Tune A) and POWHEG, data favors PYTHIA6
- Theoretical curves normalized with cross-sections from fitting technique
- Suggests that the charm production is dominated by flavor excitation

HF di-muon (1.2 < |y| < 2.2) correlations in pp@200 – bottom

- Comparison with PYTHIA6 (Tune A) and POWHEG, good agreement with data
- Theoretical curves normalized with cross-sections from fitting technique
- Suggests that the bottom production is dominated by leading order flavor (pair) creation

33

Quarkonia

- Original idea of color screening by Matsui and Satz, 1986:
 - sequential melting of quarkonia states
 - ✓ relative yield measurements can be used as QGP thermometer
- Real life turned out to be more complicated:
 - ✓ J/ ψ suppression does not increase with collision energy SPS → RHIC → LHC

Need to account for many initial and final state effects:

- ✓ nPDF, CGC, energy loss
- \checkmark nuclear absorption, co-mover dissociation, recombination of open charm

J/ψ in p/d/³He + Al/Au collisions @ 200 GeV

- Forward rapidity:
 - Iow hadron density
 - \checkmark suppression of charged hadrons and J/ ψ suggests dominant effect of shadowing (x ~ 5.10⁻³)
- Backward rapidity:
 - high hadron density
 - ✓ production of charged hadrons is enhanced (x ~ $8 \cdot 10^{-2}$)
 - \checkmark suppression of J/ ψ suggests breakup or co-mover effects

Baldin Seminar, September 17-22, 2018

Ψ ' in small systems at $\sqrt{s} = 200 \text{ GeV}$

- ***** Double ratio, $[\Psi' / J/\Psi]_{p+A}$ to $[\Psi' / J/\Psi]_{p+p}$ cancels out systematic uncertainties
- $\clubsuit \Psi' / J/\Psi$ ratio is unchanged in p(³He)-going direction
- * Ψ' / J/ Ψ ratio is suppressed by a factor of ~2 in Au/Al-going direction
- Ψ and J/ Ψ are c-cbar pairs with different binding energies of ~ 50 MeV and ~ 640 MeV
- Plotting against co-moving particle density shows common behavior at RHIC and the LHC
- Note suppression in p-going direction in p+Pb

Phys.Rev. C95 (2017) no.3, 034904

Heavy flavor - summary

- First measurement of charm and bottom separated R_{AA} and v_2 in AuAu@200:
 - ✓ clear charm flow
 - \checkmark flavor dependent energy loss and thermalization in the QGP
- First measurement of non-zero heavy flavor flow in small system at RHIC, central dAu@200
- New measurements of c-cbar and b-bar production:
 - ✓ b-bbar production is dominated by flavor (pair) creation, x2 FONLL prediction
- J/ ψ and ψ ' measurements in small systems:
 - ✓ final state effects are important for interpretation of charmonia results, especially for weakly bound states

Summary

◆ PHENIX continues to deliver new and unique results on light hadron, direct photon and heavy flavor production in different collision systems → some of them were presented today

♦ Not all data has been analyzed \rightarrow new results will emerge shortly, stay tuned

♦ Many of the obtained/presented results still do not have unambiguous and exhaustive theoretical interpretation \rightarrow consistent picture of small system and heavy-ion collisions is yet to be refined, new subjects of interest are not excluded

Thank you

Model Comparison

• SONIC:

- <u>MC Glauber initial conditions</u>
- 2+1d Hydro evolution, $\eta/s = 0.08$
- Cooper-Frye hadronization at T = 170 MeV
- Hadronic rescattering (B3D package)
- **Super SONIC:** SONIC + pre-equilibrium flow

• iEBE-VISHNU:

- <u>MC Glauber</u> initial conditions
- 2+1d Hydro evolution starting at $\tau = 0.6$ fm/c, $\eta/s = 0.08$
- Hadronization at T = 155 MeV
- Hadronic rescattering (UrQMD 3.4 package)

• Bozek – Broniowski:

- <u>MC Glauber</u> initial conditions
- 3+1d Hydro evolution

• AMPT

- <u>MC Glauber initial conditions</u>
- Strings melt to partons
- Partonic transport (partonic cross section σ part = 1.5 mb)
- Haronization parton coalescence
- Hadronic rescattering (ART package)

41

PHENIX

d+Au Energy Dependence

Factor of ~3 decrease in $dN_{ch}/d\eta$ from 200 to 20 GeV

PH^{*}ENIX

Geometry Scan

$dN_{ch}/d\eta$ increases with system size

Charged hadrons – comparison to $dN_{ch}/d\eta$

* dN_{ch}/dη is scaled to match v_2 at forward rapidity, $1 < \eta < 3$

- At 200 GeV, the scaled $dN_{ch}/d\eta$ matches the v_2 in the whole rapidity range
- At 62 and 39 GeV, the scaled $dN_{ch}/d\eta$ matches the v_2 at $\eta > 0$ and overestimates it at $\eta < 0$
- Hydro (only at 200 GeV): reproduces the trends for $dN_{ch}/d\eta$ and v_2
- AMPT: reproduces data at $\eta > 0$; $dN_{ch}/d\eta$ always overestimates v_2 at $\eta < 0$
- Can underestimate true v_2 at $\eta < 0$ with the EP method because of anti-correlation with a small Δη gap

Modification of J/ ψ vs. N_{part} @ 200 GeV

R_{AB} shows consistent dependence on N_{part} in small and large collision systems at forward and backward rapidity

γ-h correlations, AuAu@200

- Isolation cut + larger statistics greatly improved the measurement precision
- Better constraints on jet quenching parameters