

Nucleon structure studies with the PANDA experiment at FAIR

Alaa Dbeyssi

On behalf of the PANDA collaboration

Baldin ISHEPP XXIV JINR Dubna, 18 September 2018

Helmholtz Institute Mainz Johannes-Gutenberg University Mainz

Facility for Antiproton and Ion Research - FAIR (Darmstadt/Germany)

Facility for Antiproton and Ion Research - FAIR

The PANDA experiment at FAIR Collaboration

UniVPM Ancona U Basel **IHEP Beijing U** Bochum Abant Izzet Baysal U Golkoy, Bolu **U** Bonn **U** Brescia **IFIN-HH Bucharest** AGH UST Cracow **IFJ PAN Cracow** JU Cracow U Cracow FAIR Darmstadt **GSI Darmstadt** JINR Dubna **U** Edinburgh **U** Erlangen **NWU Evanston**

U & INFN Ferrara **FIAS Frankfurt U** Frankfurt LNF-INFN Frascati U & INFN Genova U Gießen **U** Glasgow **BITS Pilani KKBGC, Goa KVI Groningen** Sadar Patel U, Gujart Gauhati U, Guwahati **USTC Hefei URZ Heidelberg** FH Iserlohn Doğuş U, İstanbul FZ Jülich **IMP** Lanzhou **INFN** Legnaro **U** Lund

HI Mainz U Mainz INP Minsk **ITEP Moscow** MPEI Moscow BARC Mumbai U Münster Nankai U, Tianjin BINP Novosibirsk Novosibirsk State U IPN Orsay U Wisconsin, Oshkosh U & INFN Pavia Charles U, Prague Czech TU, Prague **IHEP Protvino** Irfu Saclay

U of Sidney PNPI St. Petersburg West Bohemian U, Pilzen **KTH Stockholm** U Stockholm SUT, Nakhon Ratchasima SVNIT Surat-Gujarat S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino U & INFN Trieste U Uppsala U Valencia SMI Vienna U Visva-Bharati NCBJ Warsaw

more than 460 physicists from from more than 75 institutions in 20 countries

C*

The PANDA experiment at FAIR

- Charmonium
- Light mesons, baryons
- Open charm
- QCD exotics: glueballs, hybrid states, X,Y,Z-states,...

Hypernuclear physics

Hadrons in the nuclear medium

Nucleon structure

Electromagnetic Form Factors of the Proton

- Electric G_E and magnetic G_M proton FFs are analytical functions of the momentum transfer squared q^2
- Playground for theory and experiment:
 - at low q^2 , probe the size of the nucleus,
 - at high q², test QCD scaling

World data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

BaBar: Phys. Rev. D88 072009 LEAR: Nucl.Phys.J., B411:3-32. 1994 BESIII: arXiv:1504.02680. 2015 CMD-3: arXiv:1507.08013v2 (2015)

@ BaBar (SLAC): $e^+e^- → \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show different trends

- @ BESIII: $e^+e^- \rightarrow \overline{p}p$
- Measurement at different energies
- Uncertainties comparable to previous experiments

@ CMD-3 (VEPP2000 collider, BINP):

- Energy scan $\sqrt{s} = 1 2 \ GeV$
- Uncertainty comparable to the existing data

World data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

>

BESIII: arXiv:1504.02680. 2015 **CMD-3**: arXiv:1507.08013v2 (2015) @ BaBar (SLAC): $e^+e^- → \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$ → data collection at low energies

Data More data needed with high tren precision!

- ^{@ BI} Test of the theory, also at high q²
 - Data with high statistics increase the precision of Form Factors

• Existing data were obtained with electron channels

Accusarement s y susa

Time-like electromagnetic proton form factors @ PANDA: The goals

▶ Form factor measurements different final states: $\overline{p}p \rightarrow l^+l^ (l = \mu, e)$

- First time measurement with muons in final state
- Study of radiative corrections
- **Consistency check** of proton form factor data
- > Possibility to access the **relative phase** of proton time-like form factors:

 $\overline{p}p \rightarrow l^+ l^-$ in the Born approximation:

- > Unpolarized cross section -> access to $|G_E| \& |G_M|$
- > Polarization observables -> access to relative phase $G_E G_M^*$:

Single spin polarization observable

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{0} A_{\mathrm{I},y} \propto \sin 2\Theta \mathrm{Im}\big(G_{M}G_{E}^{*}\big)$$

A. Z. Dubnickova, S. Dubnicka & M.P. Rekalo Nuovo Cim. A109 (1996) 241-256

> Development of a **transverse polarized target for PANDA** in **Mainz**

Time-like electromagnetic proton form factors @ PANDA: The goals

Access the **unphysical region** ($R=|G_E|/|G_M|$ and **relative phase** between G_E and G_{M}) : $\overline{p}p \rightarrow \pi^0 e^+ e^-$

- J. Boucher, M. C. Mora-Espi; PhD thesis

Measurement of time-like proton form factors over wide range of q²@ PANDA \geq

- Study the asymptotic behavior of the form factors Phys.Rev. C95 (2017) no.4, 045202 Phys.Rev. C96 (2017) no.2, 025204
- **Strong hadronic background**, mainly $\overline{p}p \rightarrow \pi^+\pi^-, \overline{p}p \rightarrow \pi^+\pi^-\pi^0$ \geq

$$\frac{\sigma(\overline{p}p \to \pi^+\pi^-)}{\sigma(\overline{p}p \to l^+l^-)} \propto \left[10^5 - 10^6\right]$$

Good background rejection (~10⁻⁸) necessary

Feasibility studies needed for both signal channels!

Feasibility studies: time-like proton form factors @ PANDA Monte Carlo Simulation Studies

$$\overline{p}p \to l^+l^- \ (l=e,\mu) \qquad \overline{p}p \to \pi^+\pi^-$$

Standard chain Simulation & Analysis with **PANDARoot**:

p _{beam} [GeV/c]	1.7	3.3	6.4
s [GeV] ²	5.4	8.2	13.9

Event selection:

- Preselection: One positive and one negative particle per event
- <u>Cuts on kinematical variables</u>: Production angles (back-to-back in center-of-mass system), & Invariant Mass.
- Signal/Background separation based on:
 - For e⁺e⁻: Different subdetector information like Electromagnetic Calorimeter, Straw Tube Tracker etc. contribute to particle identification
 - For μ⁺μ⁻: Boosted Decision trees + cuts
 Detector information MAINLY from Muon
 Range System

Feasibility studies: time-like proton form factors @ PANDA The results

Feasibility studies: time-like proton form factors @ PANDA The results

Nucleon to meson TDAs

- New class of non-perturbative structure functions
- Occur in collinear factorization description of various hard exclusive processes
- Are independent of reaction type, s and q^2
- Give information on pionic components of the nucleon wave-function

 $\frac{d\sigma}{dq^2} \sim \frac{1}{\left(q^2\right)^5}$

Fit measured cross section and measure scaling component A (A=5) → Test QCD factorization

t is small (forward kinematics)

B. Pire et al., Phys. Lett. B. 724 99-107 (2013)

- High signal cross section
- Large q² fixed to $Q^2 = M_{J/\psi}^2 = 9.6 GeV^2$ (factorization theorem is likely reached)
- Reduces uncertainty on DAs by using the data on the $J/\psi \rightarrow pp$ partial decay modes
- Complementary measurements: test of universality of TDAs by comparing to $\overline{p}p \rightarrow \gamma^* \pi^0 \rightarrow e^+ e^- \pi^0$ at different q^2

 $\overline{p}p \rightarrow J / \psi \pi^0 \rightarrow e^+ e^- \pi^0$

Detector requirements from physics case

- $\sim 4\pi$ acceptance
- Momentum resolution: 1% central tracker in magnetic field
- Photon detection: 1 MeV 10 GeV high dynamic range good energy resolution
- Particle identification: γ, e, μ, π, K, p
 Cherenkov detector
 time of flight, dE/dx, muon counter
- Displaced vertex info $c\tau = 317 \ \mu m \text{ for } D \pm \gamma \beta \approx 2$

Cross section for electromagnetic Processes

The PANDA detector (start/full setup)

The PANDA phases

Summary

• Proton form factors can be measured at PANDA in the time-like region and over a large kinematical region through:

$$\overline{p}p \rightarrow e^+e^ \overline{p}p \rightarrow \mu^+\mu^ \overline{p}p \rightarrow e^+e^-\pi^0$$

• PANDA will provide valuable measurements for the test of universality of TDAs through:

$$\overline{p}p \to \gamma^* \pi^0 \to e^+ e^- \pi^0 \qquad \overline{p}p \to J / \psi \pi^0 \to e^+ e^- \pi^0$$

- PANDA experiment will provide a **complementary** study of the nucleon structure with the hard inclusive and exclusive processes: Generalized Distribution Amplitudes (GDAs), (TMD) Parton Distribution Functions, and Transition Distribution Amplitudes (TDAs)
 - Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons, <u>arXiv:0903.3905</u>
 - [PANDA Collaboration], Phys. Rev. D 95, 032003 (2017)
 - [PANDA Collaboration], Eur. Phys. J. A 52, 325 (2016)
 - [PANDA Collaboration], Eur. Phys. J. A 51, 107 (2015)

Study of the Nucleon Structure at PANDA

- Proton Electromagnetic Form Factors (FFs)
- Generalized Distribution Amplitudes (GDAs)
- Transverse Momentum Dependent Parton Distribution Functions (TMD-PDFs)
- Transition Distribution Amplitudes (TDAs)

FAIR-HESR (Start version)

Validity ranges of the TDA model:

- *t* is small
 (forward kin.)
- *u* is small (backward kin.)

Background final states:

- Three pion production: $\pi^+\pi^-\pi^0$ (B/S~10⁵ 10⁶)
- Multipion final states (N>3): $\pi^0 \pi^0 \pi^+ \pi^-$, $\pi^0 \pi^+ \pi^- \pi^- \pi^0$ (B/S~3-15)
- Dielectron continuum : $\gamma * \pi^0 e^+ e^- \pi^0$
- Annihilation into $\pi^0 \pi^0 J/\psi$
- Hadronic decays of J/ψ

Phys. Rev. D 95, 032003 (2017)

Hard exclusive processes at PANDA-GDAs

- GDAs can be measured at PANDA with the hard exclusive electromagnetic processes: ppbar $\rightarrow \gamma\gamma$, γM (M= π^{0} , η , ρ^{0} , ϕ)
- PANDA measurements are complementary to the results from the deeply virtual Compton scattering (**DVCS**), the deeply virtual meson production (**DVMP**), the time-like Compton scattering using real photon beams, and lepton-pair production with meson beams.

Feasibility studies for GDAs measurement at PANDA

 $\overline{p}p \to \pi^0 \gamma \qquad \overline{p}p \to \pi^0 \pi^0$

- 4 different CM energies
- Main background channels:

 $\overline{p}p \rightarrow \pi^0 \pi^0 \text{ (for both signals)} \\ \overline{p}p \rightarrow \pi^0 \gamma \text{ (for signal1:} \overline{p}p \rightarrow \gamma\gamma \text{)}$

PANDA Physics Performance Report arXiv:0903.3905

Transverse Momentum dependence -Parton Distribution Functions

Drell-Yan at PANDA

 \bar{p}

p

TMD-PDFs are convoluted with the fragmentation functions Direct access to TMD-PDFs

X

X

Test of Universality and the QCD TMD factorization

Drell-Yan at PANDA: TMD-PDFs

(a) PANDA energy range up to $s\sim 30 \text{ GeV}^2$:

- access to a unique kinematic region where valence quark effects dominate
- In ppbar annihilation each valence quark can contribute to the DY diagram

Asymmetry measurements: Unpolarized Drell Yan $A^{\cos 2\varphi} \rightarrow h_1^{\perp}$ Single-polarized Drell Yan $A^{\sin(\varphi \pm \varphi s^2)} \rightarrow h_1^{\perp}, h_{1T}, f_{1T}^{\perp}$

 φ : angle between hadron and lepton planes φ_{s2} : angle between hadron spin and lepton plane

Feasibility measurement of Drell Yan processes at PANDA

Monte-Carlo simulations:

- Signal: $\overline{p}p \rightarrow \mu^+ \mu^- X$ Unpolarized DY $\overline{p}p^{\uparrow} \rightarrow \mu^+ \mu^- X$ Single-polarized DY
- Main background: $\overline{p}p \rightarrow n(\pi^+\pi^-)X$, required rejection factor ~10⁷
- Simulations @ s=30 GeV² and $1.5 \le M_{\gamma^*} \le 2.5$ (large cross section)

Feasibility measurement of Drell Yan processes at PANDA

Monte-Carlo simulations:

A cos(2¢)

0.05

-0.15

- Signal: $\overline{p}p \rightarrow \mu^+ \mu^- X$ Unpolarized DY $\overline{p}p^{\uparrow} \rightarrow \mu^+ \mu^- X$ Single-polarized DY
- Main background: $\overline{p}p \rightarrow n(\pi^+\pi^-)X$, required rejection factor ~10⁷
- Simulations @ s=30 GeV² and $1.5 \le M_{\gamma^*} \le 2.5$ (non resonance region, large cross section) Number of simulated events N~5 . 10⁵ PANDA Physics Performance Report

arXiv:0903.3905

sin(++++)

Preliminary studies

 Acceptance, efficiency corrections, background rejection are still under investigation: expectation: ~130. 10³ DY/month

- Few months of data taking (L=2 . 10³² cm⁻² s⁻¹): precise measurements of the azimuthal asymmetries are possible
 - Feasibility studies for measuring Drell Yan processes at PANDA are ongoing

 q_{T} : transverse momentum of the muon pair