

# Proposed fixed target experiment at the LHC beams.

N.S.Topilskaya and A.B. Kurepin Institute for Nuclear Research, RAS for AFTER@LHC study group

Fixed target proposal.
 Physical motivation.
 Experimental situation.
 Summary.

N.S.Topilskaya, ISHEPP\_XXIV, 17 September 2018.

# **1. Proposal of fixed target experiments at the LHC**

1. Fixed-target experiment with wire target at the LHC— energy between SPS and RHIC was proposed in 2005 and then in 2009 at CERN Workshop "New opportunities at CERN" by INR RAS. A.B.Kurepin, N.S.Topilskaya, M.B.Golubeva

Charmonium production in fixed-target experiments with SPS and LHC beams at CERN. Phys.Atom.Nucl.74:446-452, 2011, Yad.Fiz.74:467-473, 2011.

2. Then proposal of experiment AFTER@LHC (A Fixed Target ExpeRiment at the LHC).

S.J.Brodsky, F.Fleuret, C.Hadjidakis and J.P.Lansberg

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams Phys. Rept. 522 (2013) 239

**3.** Experiment started at LHCb with low density gas target (SMOG)



#### 4. J.-P.Lansberg et al., Special issue "Advances in High Energy Physics 2015 (2015)"

### Physics at a Fixed-Target Experiment Using the LHC Beams Study and physical ideas

The Gluon Sivers Distribution: Status and Future Prospects, D.Boer et al., ID 371396

Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment in a TMD Factorization Scheme, M.Anscelmino et al., ID 475040

A Gas Target Internal to the LHC for the Study of *pp* Single-Spin Asymmetries and Heavy Ion Collisions, C.Barschel et al., ID 463141

Quarkonium Production and Proposal of the New Experiments on Fixed target at the LHC, A.B.Kurepin and N.S.Topilskaya, ID 760840



Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC), I.Massacrier et al., ID 986348 **5.** A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies.

<a href="http://inspirehep.net/record/1680152">http://inspirehep.net/record/1680152</a>
By C. Hadjidakis et al.. [arXiv:1807.00603 [hep-ex]].

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current\_author\_list

#### Current study group of AFTER@LHC experiment

C. Hadjidakis<sup>a,1</sup>, D. Kikoła<sup>b,1</sup>, J.P. Lansberg<sup>a,1,\*</sup>, L. Massacrier<sup>a,1</sup>, M.G. Echevarria<sup>c,2</sup>, A. Kusina<sup>d,2</sup>,
I. Schienbein<sup>e,2</sup>, J. Seixas<sup>f,g,2</sup>, H.S. Shao<sup>h,2</sup>, A. Signori<sup>i,2</sup>, B. Trzeciak<sup>j,2</sup>, S.J. Brodsky<sup>k</sup>, G. Cavoto<sup>1</sup>,
C. Da Silva<sup>m</sup>, F. Donato<sup>n</sup>, E.G. Ferreiro<sup>o,p</sup>, I. Hřivnáčová<sup>a</sup>, A. Klein<sup>m</sup>, A. Kurepin<sup>q</sup>, C. Lorcé<sup>r</sup>, F. Lyonnet<sup>s</sup>,
Y. Makdisi<sup>t</sup>, S. Porteboeuf<sup>u</sup>, C. Quintans<sup>g</sup>, A. Rakotozafindrabe<sup>v</sup>, P. Robbe<sup>w</sup>, W. Scandale<sup>x</sup>,
N. Topilskaya<sup>q</sup>, A. Uras<sup>y</sup>, J. Wagner<sup>z</sup>, N. Yamanaka<sup>a</sup>, Z. Yang<sup>aa</sup>, A. Zelenski<sup>t</sup>

"IPNO, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France <sup>b</sup>Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland <sup>c</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy <sup>d</sup>Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland <sup>e</sup>Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble, France <sup>f</sup>Dep. Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal <sup>8</sup>LIP, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal <sup>h</sup>LPTHE, UMR 7589, Sorbonne Universityé et CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France <sup>i</sup>Theory Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA <sup>j</sup>Institute for Subatomic Physics, Utrecht University, Utrecht, The Netherlands <sup>k</sup>SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>1</sup>"Sapienza" Università di Roma, Dipartimento di Fisica & INFN, Sez. di Roma, P.le A. Moro 2, 00185 Roma, Italy <sup>m</sup>P-25, Los Alamos National Laboratory, Los Alamos, NM 87545, USA "Turin University, Department of Physics, and INFN, Sezione of Turin, Turin, Italy <sup>o</sup>Dept. de Física de Partículas & IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain PLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France <sup>q</sup>Institute for Nuclear Research, Moscow, Russia <sup>r</sup>CPHT, École Polytechnique, CNRS, 91128 Palaiseau, France <sup>s</sup>Southern Methodist University, Dallas, TX 75275, USA <sup>t</sup>Brookhaven National Laboratory, Collider Accelerator Department "Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France. "IRFU/DPhN, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France \*\*LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France \*CERN, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland <sup>y</sup>IPNL, Université Claude Bernard Lyon-I and CNRS-IN2P3, Villeurbanne, France <sup>2</sup>National Centre for Nuclear Research (NCBJ), Hoża 69, 00-681, Warsaw, Poland <sup>aa</sup>Center for High Energy Physics, Department of Engineering Physics, Tsinghua University, Beijing, China

#### 2. Physical motivation

#### Advantages of the fixed target experiment

Four features:

• accessing the high x,

 $[\mathbf{x}_{\mathrm{F}} = |\mathbf{p}_{\mathrm{z}}|/|\mathbf{p}_{\mathrm{zmax}} \rightarrow 1]$ 

• achieving high luminosities

• varying the beams and atomic mass of the target

• possibility polarizing the target

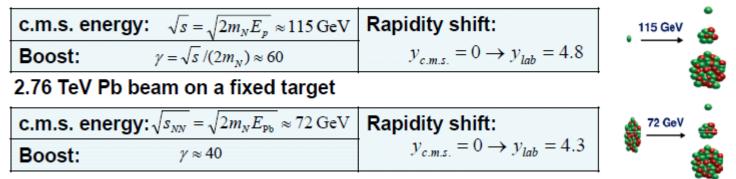
#### Three physics reasons:

• Heavy-ion physics between SPS&RHIC energies towards large rapidities (Test of factorization of the cold nuclear matter effects from p+A to A+B collisions, study of quarkonia production and suppression depending on the phase transition of matter to quark-gluon phase)

• High –x gluon, antiquark and heavy quark content in the nucleon&nucleus

(Very large PDF uncertainties for x>0.5, could be crucial to characterize possible BSM discoveries)

#### • Transverse dynamics and spin of quarks/gluons inside (un)polarized nucleon


(Possible missing contribution to the proton spin from quark/gluon orbital angular momentum) All this can be realized at CERN without disturbing other experiments at the LHC with the beams of highest energy and luminosities

Note, that all accelerators with energy  $E_p > 100$  GeV now have fixed target program: (Tevatron, HERA, SPS, RHIC)

#### **Fixed target experiment at the LHC: main kinematical features**

#### Energy range

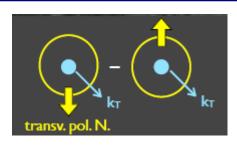
7 TeV proton beam on a fixed target



Such energies allow systematic studies of spin physics, heavy ion physics, quarkonia production and  $p_T$  spectra, associated production and W - boson production in a fixed target mode.

- ALICE and LHCb become backward detectors (y<sub>cms</sub> <0)
- acceptance for physics grows and for most probes covers (-1 <  $x_F$  < 0 )
- allows for backward physics access to high target x ( most relevant for p-p $\uparrow$ )

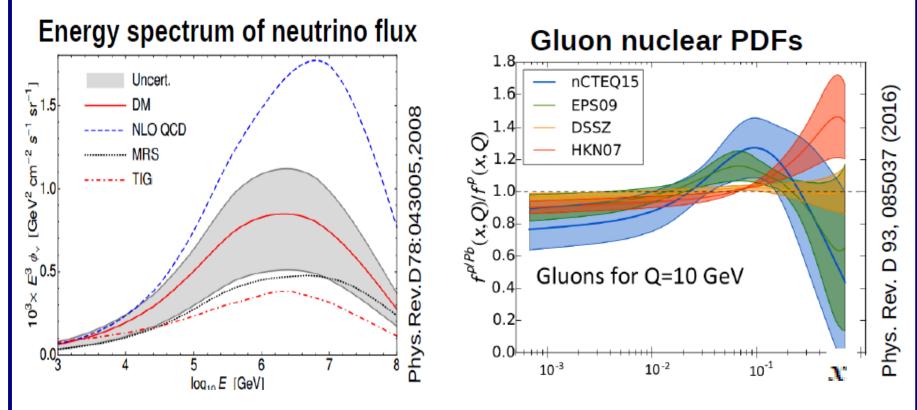
#### The new target rapidity region


The first systematic access to the target rapidity region  $x_F \rightarrow -1$ 



• CMS/ATLAS :  $|\mathbf{x}_{\mathrm{F}}| < 5 \cdot 10^{-3}$ ; LHCb, ALICE:  $< 5 \cdot 10^{-3} < \mathbf{x}_{\mathrm{F}} < 4 \cdot 10^{-2}$ • fixed target :  $\mathbf{x}_{\mathrm{F}} \approx -1$  if measure  $\Upsilon$  at  $\mathbf{y}_{\mathrm{cms}} = -2.5$ 



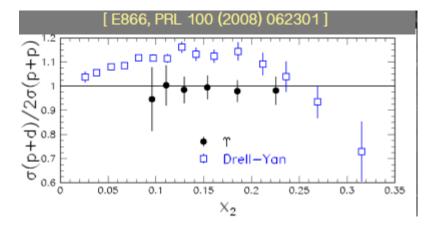

Spin physics in AFTER@LHC The orbital angular momentum (OAM) of the quarks and gluons

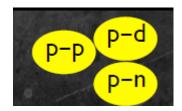


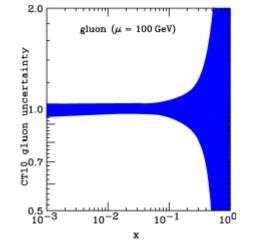
- Missing knowledge on the contribution of the orbital angular momentum (OAM)  $L_g$  and  $L_q$  to the proton spin
  - In fixed-target experiment it is possible to use polarized target.
    The polarization can be longitudinal and transverse.
    Single Transverse Spin Asymmetries connected with the correlations between parton k<sub>T</sub> and the proton spin
    - $\rightarrow$  information about orbital motion of partons in the proton
- Quark/Gluon Sivers function : distortion in the distribution of an unpolarized partons with momentum fraction x and transverse momentum  $k_{\perp}$  due to the proton transverse polarization:  $f_{1T}^{\perp}(x, k_{\perp}^{2})$
- First suggested by D.Sivers to explain the large observed left-right single transverse spin asymmetries  $A_N$  in  $p \uparrow p \rightarrow \pi X$
- Non-zero quark/gluon Sivers function  $\rightarrow$  non-zero quark/gluon OAM

#### High-x frontier

- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Help to reduce uncertainties on PDFs, astrophysics calculations





#### The gluon PDF


- Gluon distribution at high and ultra-high x<sub>B</sub> in the
   proton
  - neutron (via deuteron target)

Gluon PDF for neutron – experimentally unknown
Gluon PDF at high x – large uncertainties for proton
Need high luminosity to reach high x
Experimental probes :

heavy quarkonia (gg fusion at high energy)
 isolated photons (gq fusion)
 high p<sub>T</sub> jets (p<sub>T</sub> >20 GeV)
 Was







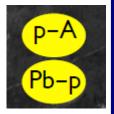
#### Was measured by E866 Fermilab

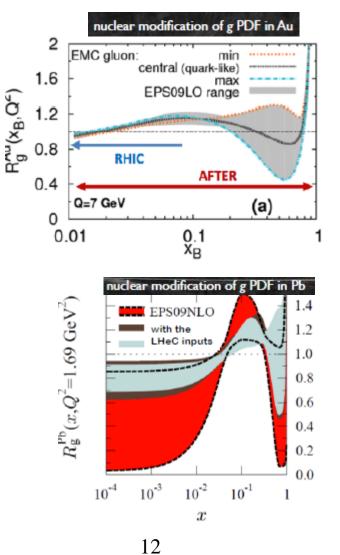
- using  $\Upsilon$
- at Q<sup>2</sup>~100 GeV<sup>2</sup> similar gluon

distribution in proton and neutron

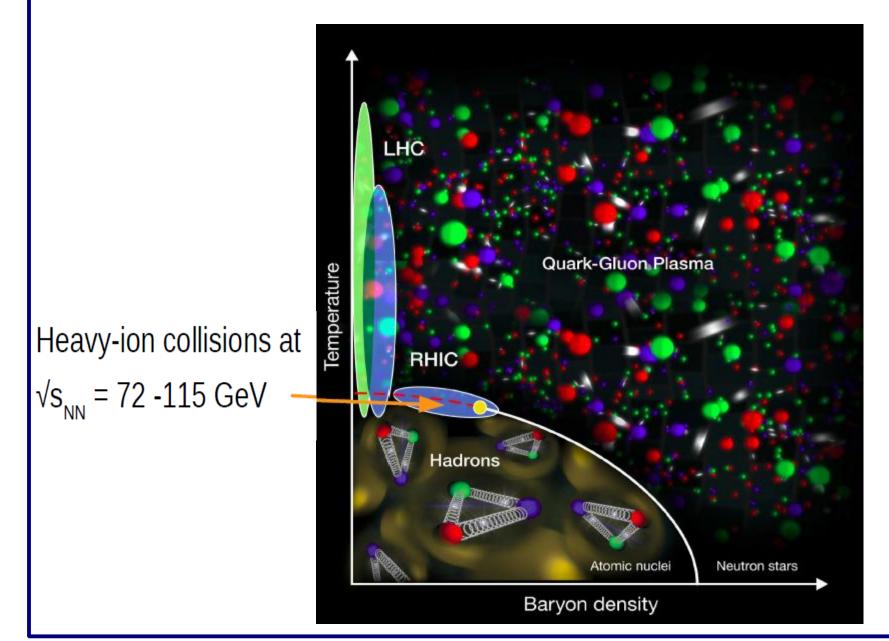
At AFTER@LHC could be extended

• using  $J/\psi$ 


- to lower x and  $Q^2$
- need high luminosity


#### The gluon nPDF

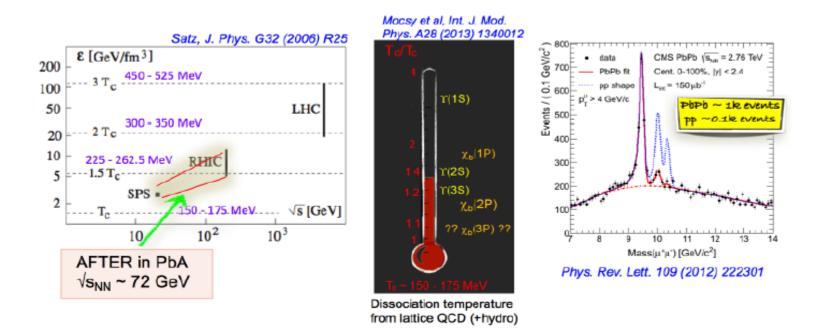
- A dependence with target versatility probing nuclear matter effects and shadowing
- **nuclear PDF** from intermediate to high x: antishadowing, EMC region, Fermi motion


#### **Experimental probes for AFTER:**

- quarkoniaisolated photons
- high  $p_T$  jets ( $p_T > 20 \text{ GeV}$ ) to access target  $x_F \approx 0.3-1$






#### **Heavy-ion physics**



*13* 

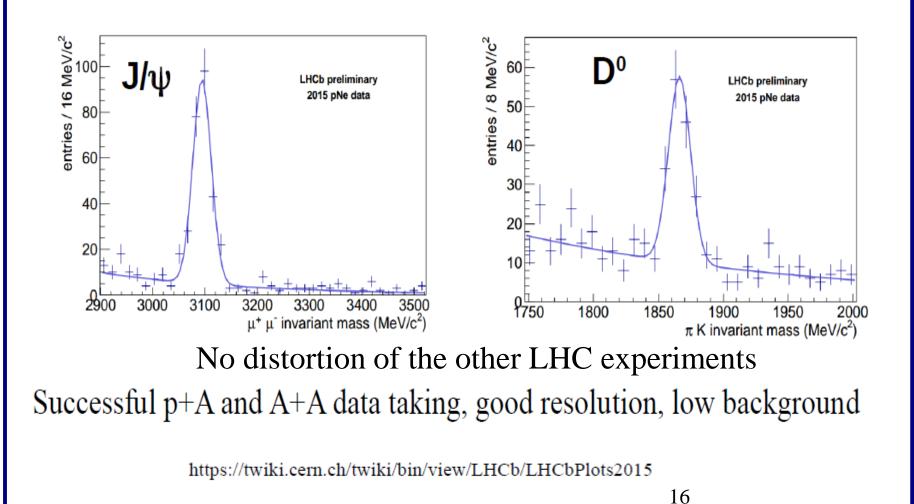
#### Heavy-ion collisions towards large rapidity

A complete sets of quarkonium studies between SPS and RHIC energies (calibration of quarkonium thermometer  $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + pairs)$ in new energy and kinematical ranges, contribution of recombination



Factorization of cold nuclear matter effects from p+A to A+B collisions in new energy and kinematical ranges

# **3. Experimental situation**


- Three possibilities for internal fixed target experiment with existing detectors ALICE or LHCb:
- 1. To use extracted with bent crystal part of the beam and then put fixed target
- 2. To put the internal gas target (like SMOG at LHCb) or polarized gas target (HERMES-type system at HERA) and full LHC beam
- **3.** To use wire or ribbon target in the beam halo (like HERA-B, STAR )



#### or extraction of beam with bent crystal ---new beam line and new experimental system.

At the LHC the possible technical implementation are discussed within the Physics Beyond Collider Fixed-Target working group. Conveners: S.Redealli and M.Ferro-Luzzi http://pbc.web.cern.ch

#### **SMOG - LHCb data**



Daniel Kikoła

| Fixed-target charmonium data (SPS, FNAL, HERA)                                          |                                                                                                                                         |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| AA collisions<br>SU, PbPb, InIı                                                         |                                                                                                                                         |  |  |  |  |  |  |
|                                                                                         | Pb-Pb 158 GeV/nucleon, 0 <y<sub>cm &lt;1, √s=17.3 GeV<br/>NA60<br/>In-In 158 GeV/nucleon, 0<y<sub>cm &lt;1, √s=17.3 GeV</y<sub></y<sub> |  |  |  |  |  |  |
| pA collisions                                                                           | HERA-B<br>p-Cu,(Ti),W 920 GeV, -0.34 <xf<0.14, gev<="" th="" √s="41.6"></xf<0.14,>                                                      |  |  |  |  |  |  |
| E866<br>p-Be, Fe, W 800 GeV,-0.10 <xf<0.93, gev<br="" √s="38.8">NA50</xf<0.93,>         |                                                                                                                                         |  |  |  |  |  |  |
| p-Be,Al,Cu,Ag,W,Pb 400/450 GeV,-0.1 <xf<0.1<br><math>\sqrt{s}=27.4/2</math></xf<0.1<br> |                                                                                                                                         |  |  |  |  |  |  |
|                                                                                         | NA51<br>p-p, d 450 GeV, -0.1 <x<sub>F&lt;0.1, <math>\sqrt{s}=29.1</math> GeV<br/>NA3, NA38</x<sub>                                      |  |  |  |  |  |  |
|                                                                                         | p-p,Pt, Cu,U 200 GeV, $0 < x_F < 0.6$ , $\sqrt{s} = 19.4$ GeV<br>NA60                                                                   |  |  |  |  |  |  |
|                                                                                         | p-Be,Al,Cu,In,W,Pb,U 158/400 GeV,-0.1 <xf<0.35,<br>17 √s=17.3/27.4 GeV</xf<0.35,<br>                                                    |  |  |  |  |  |  |

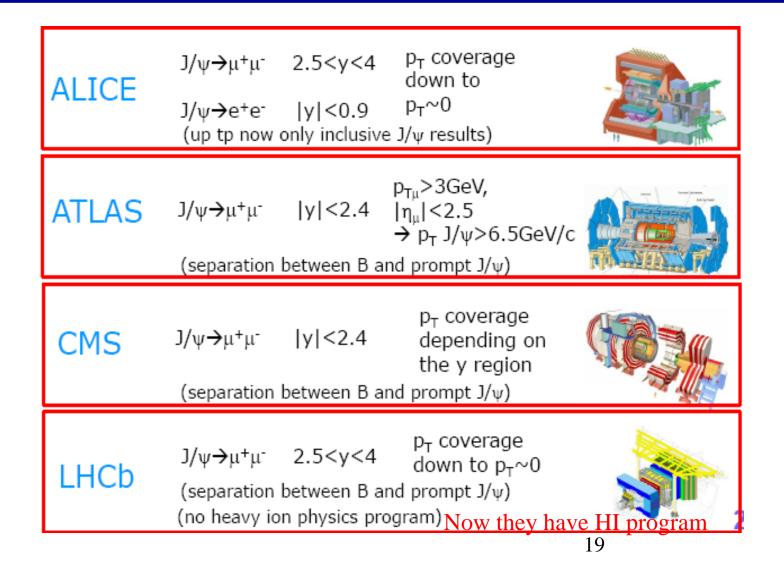
#### **Colliders (RHIC, LHC) data**



pA collisions

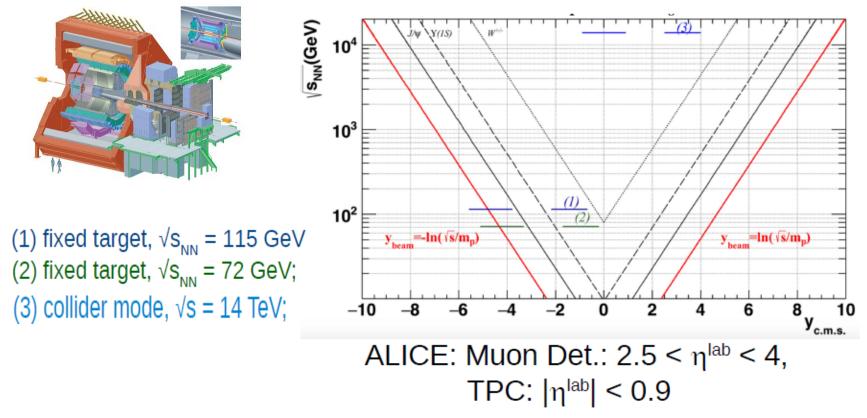
RHICCuCu, AuAu $\sqrt{s} = 39, 62, 130$  GeV, 200 GeV<br/>UU $\sqrt{s} = 193$  GeVLHCPbPb $\sqrt{s} = 2.76, 5.02$  TeV (max 5.5 TeV)RHICpp, dAu $\sqrt{s} = 130, 200$  GeV<br/>LHC $\sqrt{s} = 2.76, 7, 8, 13$  TeV (max 14TeV)<br/> $\sqrt{s} = 5.02, 8.16$  TeV

#### **Fixed target experiment at LHC**




pA collisions

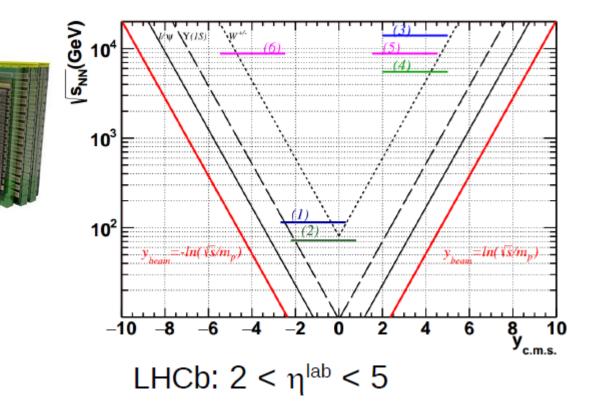
**AA collisions** 


**p-A** 7.0 TeV,  $\sqrt{s} = 115$  GeV

#### **Quarkonium production at LHC: ALICE, ATLAS, CMS and LHCb**.

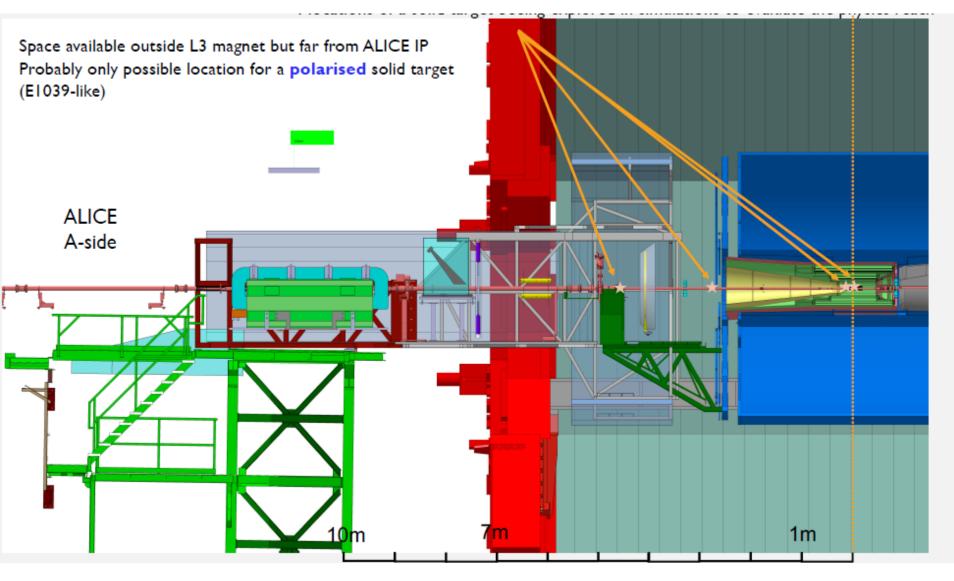


#### **Rapidity shift and kinematical coverage (ALICE case)**


ALICE detector



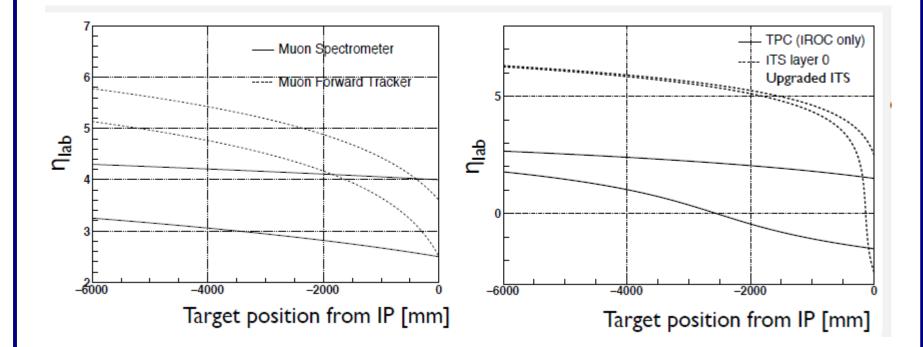
With a forward detector - access mid-to forward rapidity region ( $y_{cms} < 0$ ) With mid-rapidity detector – probe very backward rapidity region


#### **Rapidity shift and kinematical coverage (LHCb case)**

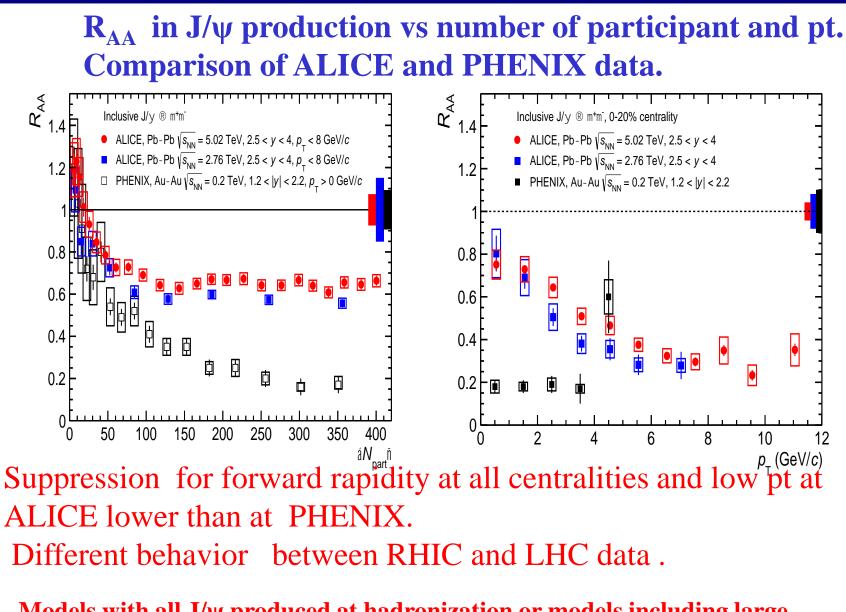
LHCb detector



(1) fixed target,  $\sqrt{s_{NN}} = 115 \text{ GeV}$ ; (2) fixed target,  $\sqrt{s_{NN}} = 72 \text{ GeV}$ ; (3) collider mode,  $\sqrt{s} = 14 \text{ TeV}$ ; (4) collider mode,  $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ , (5),(6)  $\sqrt{s_{NN}} = 8.8 \text{ TeV}$ 

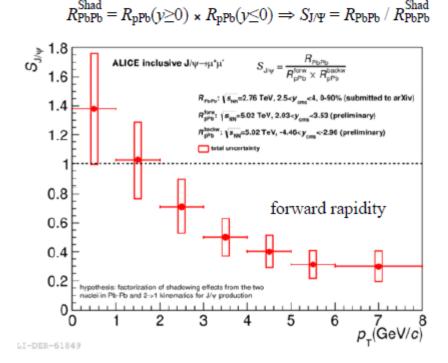

#### **Possible target locations in ALICE**




4 locations were simulated (L.Massacrier et al.)

z = 4700, 2750, 135, 0 mm

#### ALICE acceptance versus z(target)




In target position z<<0 new vertex detector needed (L.Massacrier)



Models with all J/ $\psi$  produced at hadronization or models including large fraction (>50% in central collisions) of J/ $\psi$  produced from recombinations can describe ALICE results.

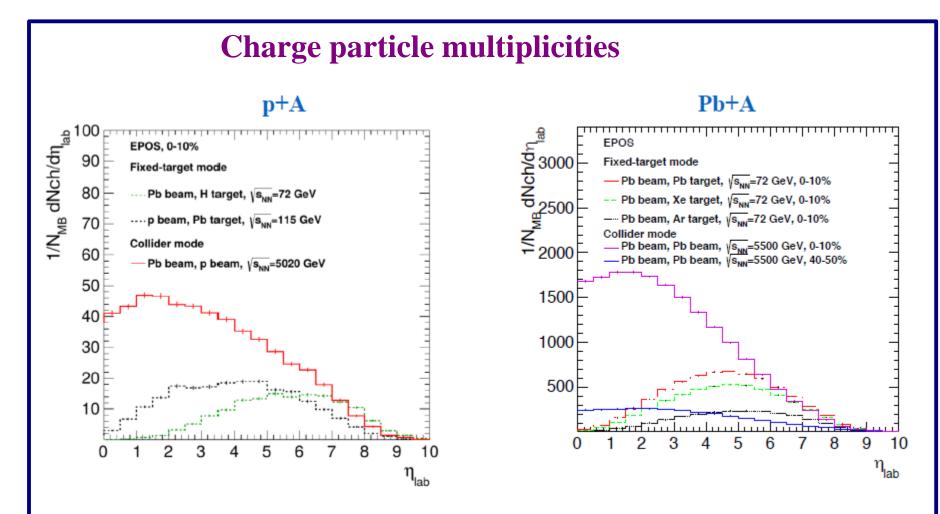
#### **R**<sub>AA</sub> (**PbPb**) for forward rapidity vs transverse momentum without shadowing and CNM effects



At low transverse momentum  $J/\psi$  are produced with indication on enhancement in agreement with regeneration model. At high transverse momentum strong suppression is seen – QGP formation?

**Final state effects** 

**No** theoretical model that could reproduce all data of quarkonium production.


Fixed target experiment at the LHC for quarkonium production at the energy range between SPS and RHIC in p-A and A-A collisions with planning proton beam at T=7 TeV ( $\sqrt{s} = 114.6$  GeV) and Pb beam at 2.75 TeV ( $\sqrt{s} = 71.8$  GeV) with high statistics is possibility to clarify the mechanism of quarkonium (J/ $\psi$ ,  $\psi$ (2S), Y(1S,2S,3S) and  $\chi_c$ ) production, to investigate the contribution of recombination .

proton and lead beams, different targets, possible scan of the energy

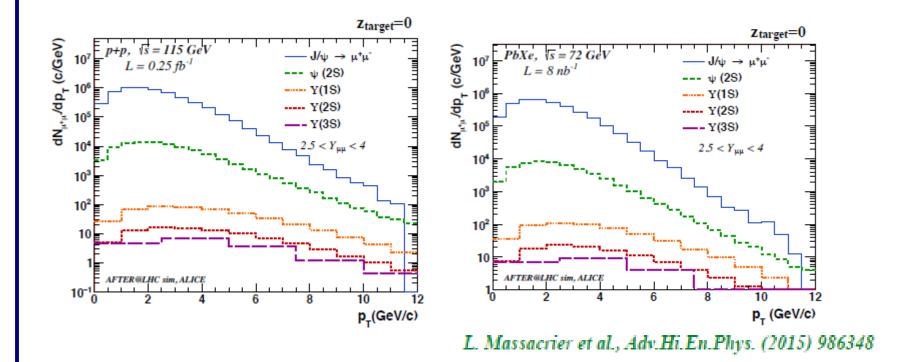
#### Luminosities for 500 µm target length

| LHC beam | Target species | Density $\rho$ [g cm <sup>-3</sup> ] | M [g mol <sup>-1</sup> ] | Thickness $\ell$ [ $\mu$ m] | $\theta_{\text{target}} \text{ [cm}^{-2}\text{]}$ | beam flux [s <sup>-1</sup> ] | $\mathcal{L}$ [cm <sup>-2</sup> s <sup>-1</sup> ] |
|----------|----------------|--------------------------------------|--------------------------|-----------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|
| р        | С              | 2.25                                 | 12                       | 500                         | $5.6 \cdot 10^{21}$                               | $5 \times 10^{8}$            | $2.8 \cdot 10^{30}$                               |
| р        | Ti             | 4.43                                 | 48                       | 500                         | $2.8 \cdot 10^{21}$                               | $5 \times 10^8$              | $1.4 \cdot 10^{30}$                               |
| р        | W              | 19.25                                | 184                      | 500                         | $3.1 \cdot 10^{21}$                               | $5 \times 10^8$              | $1.6 \cdot 10^{30}$                               |
| Pb       | С              | 2.25                                 | 12                       | 500                         | $5.6 \cdot 10^{21}$                               | 105                          | $5.6 \cdot 10^{26}$                               |
| Pb       | Ti             | 4.43                                 | 48                       | 500                         | $2.8 \cdot 10^{21}$                               | 105                          | $2.8\cdot10^{26}$                                 |
| Pb       | w              | 19.25                                | 184                      | 500                         | $3.1 \cdot 10^{21}$                               | 105                          | $3.2\cdot10^{26}$                                 |

Typical luminosities integrated over a month ( $10^6$  s): L <sub>PbW</sub> (72 GeV) = 0.3/nb



Charge particle multiplicities for all fixed target modes: p+Pb at 115 GeV and Pb +H at 72 GeV (left) and Pb+Pb, Pb+Xe, Pb+Ar at 72 Gev (right)
 Multiplicities smaller than reached in collider mode for n <6</li>


• Multiplicities smaller than reached in collider mode for  $\eta_{lab} < 6$ 

• ALICE would be possible to use such multiplicities

Large yields expected for charmonia

#### L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

#### **Quarkonium production in ALICE muon spectrometer**



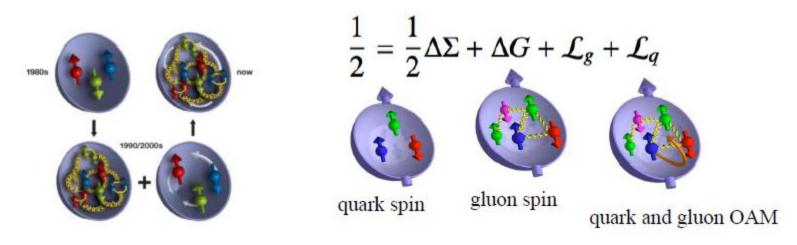
• Luminosity corresponds to  $\frac{1}{2}$  year of p-H2 and 1 year of PbXe data -taking

• Probe high-x gluon in the target in particularly with  $\Upsilon(1S)$  within acceptance

#### 4. Conclusions

Three physics reasons for fixed target program at the LHC (without disturbing the other experiment):
Heavy-ion physics between SPS&RHIC energies towards large rapidity (the approach to the phase transition point)
High -x gluon, antiquark and heavy quark content in the nucleon&nucleus (new probes and connection to astrophysics)
Transverse dynamics and spin of quarks/gluons inside (un)polarized nucleon (knowledge on the contribution of the orbital angular moment to the proton spin )

The measurement in energy range for fixed target experiment between SPS and RHIC with high statistics gives important additional information for quarkonium (J/ $\psi$ ,  $\psi$ (2S),  $\Upsilon$ (1S,2S,3S) and  $\chi_c$ ) production. proton and lead beams, different targets, possible scan of energy


• The possible technical implementation are discussed at the LHC: internal gas target, beam extraction with bent crystal or internal wire target

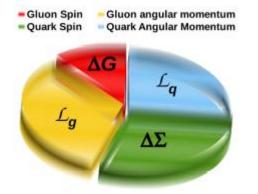
• The Expression of Interest is preparing to be sent to the CERN LHCC

# Backup

#### **Spin physics in AFTER@LHC**

• Unraveling the spin of the nucleon




• Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

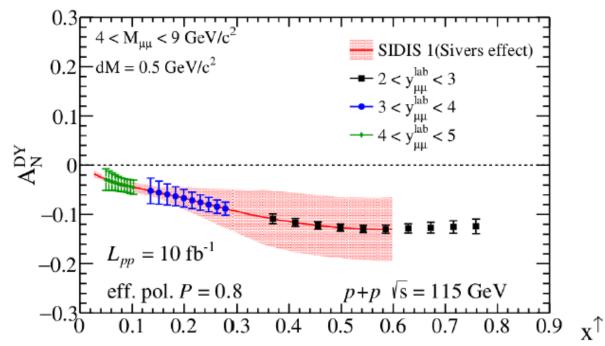
[First hint by COMPASS that  $\mathcal{L}_g \neq 0$ ]

[beyond the DY  $A_N$  sign change]

• Test of the QCD factorisation framework



#### The quarks orbital angular momentum (OAM) .


# Single spin asymmetry (STSA) in Drell-Yan studies with AFTER@LHC. Expected asymmetries.

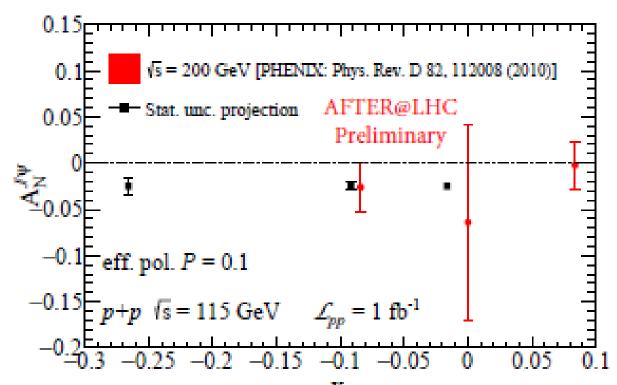


The target-rapidity region (negative  $x_F$ ) corresponds to high  $x^{\uparrow}$ 

where the  $k_T$ -spin correlation is the largest

Experimental goal: to measure asymmetries on the order of 5-10 % at  $x_F < 0$ 




Transverse Single-Spin Asymmetries in Proton-Proton Collisions... M.Anscelmino et al., Adv. High Energy Physics **2015** (2015) ID 475040

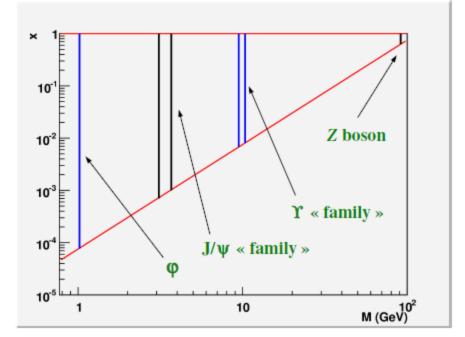
#### **Points – calculated AFTER@LHC values.**

# The gluon orbital angular momentum (OAM) contribution to the proton spin in J/ $\psi$ production Single transverse spin asymmetry (STSA) for J/ $\psi$ production



• It can be measured via  $A_N$  of gluon sensitive probes [as opposed to DY for quarks]




The three red points correspond to 2<ylab<3, 3<ylab<4 and 4<ylab<5 **PHENIX** data, with average central value  $A_N(J/\psi) = -0.025$ . Black points – calculated AFTER@LHC values.

#### The dilepton study

- $\Rightarrow$  Region in *x* probed by dilepton production as function of  $M_{\ell\ell}$
- $\rightarrow$  Above  $c\bar{c}$ :  $x \in [10^{-3}, 1]$
- → Above  $b\bar{b}$ :  $x \in [9 \times 10^{-3}, 1]$

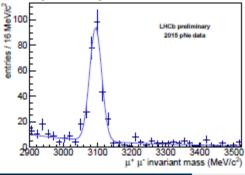

Note: 
$$x_{target}(\equiv x_2) > x_{projectile}(\equiv x_1)$$
  
"backward" region

- $\rightarrow$  sea-quark asymetries via *p* and *d* studies
- at large(est) x: backward ("easy")
- at small(est) *x*: forward (need to stop the (extracted) beam)



➡ To do: to look at the rates to see how competitive this will be

#### **Fixed target experiment at the LHC: main kinematical features**




- Entire center-of-mass forward hemisphere (ycm > 0) within 1 degree
- Large angle gives access to large parton momentum fraction (x<sub>2</sub>) of the target
- LHCb and the ALICE muon arm become backward detectors  $[y_{c.m.s.} < 0]$
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers half of the backward region for most probes  $[-1 < x_F < 0]$
- Allows for backward physics up to high x<sub>target</sub> (≡ x<sub>2</sub>) [uncharted for proton-nucleus; most relevant for p-p<sup>↑</sup> with large x<sup>↑</sup>].

#### Internal gas targets

#### SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
   parasitic
   [up to one week, so far]
- ✓ New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject [pressure and duration]
- ✗ No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- ✗ Kr and Xe maybe only at end of a run



#### HERMES(-like) system

- Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years
- Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised <sup>3</sup>He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- ✗ May need complementary vertexing capabilities

#### J.P. Lansberg (IPNO, Paris-Sud U.)

200

Ξ

# Polarized target: HERMES-type system

- Dedicated pumping system
- Polarised H and D injected ballistically in open-end storage cell with high polarisation ~80%
- Possible polarised <sup>3</sup>He or unpolarised heavy gas (Kr, Xe)
- Typical integrated luminosity over a year:
  - p-H at  $\sqrt{s_{_{\rm NN}}}$  = 115 GeV, L<sub>int</sub> ~ 10 fb<sup>-1</sup>
  - Pb-H at  $\sqrt{s_{\text{NN}}}$  = 72 GeV, L<sub>int</sub> ~ 100 nb<sup>-1</sup>



Adv. High Energy Phys. 2015 (2015) 463141 E. Steffens, PoS (PSTP2015) 019

#### **Experiment AFTER**

#### **AFTER :**

- Offers a wide physical program.
- Possibility to use different targets with high thickness higher luminosity (20 times more for 1 cm target vs 500 μm)
- Possibility to use liquid H<sub>2</sub> and D<sub>2</sub> targets: extremely high luminosity ~20 fb<sup>-1</sup> yr<sup>-1</sup> -compatible to LHC. But – high cost.
  - Fixed target experiment with the target in the form of thin ribbon:



- Only after beam tuning with the aid of rotation system-put in the working position
- Used only halo of the beam ( and may be used as extra collimator)
- May be placed at existing experimental installation (for example, ALICE and/or LHCb)
- Possibility to measure charmonium production with rather high statistics on different targets in pA and PbA. First step ?
   39