

The very forward hadron calorimeter PSD for the future CBM@FAIR experiment

Vasily Mikhaylov for the CBM Collaboration

Nuclear Physics Institute of the Czech Academy of Sciences

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Compressed Baryonic Matter (CBM) experiment

Projectile Spectator Detector (PSD)

Principle: detection of forward going projectile nucleons and nuclei fragments (spectators) produced close to the beam rapidity in nucleus-nucleus collisions

Purpose: measurement of the reaction centrality and reconstruction of the reaction plane

Features:

- compensating calorimeter with lead/scintillator sampling ratio 4:1 good energy resolution ~55%/VE
- high transverse granularity by 44 modules transverse homogeneity of energy resolution, reaction plane measurements
- longitudinal segmentation of 10 sections per module longitudinal shower profile measurement, calibration
- light readout from a section through WLS fibers by photodiodes *large dynamic range, no nuclear counting effect*
- New design with a 20x20 cm² beam hole in the center *drastic reduction of radiation damage from*
- ability to operate at high collision rates up to 1MHz
- total 22 tons of weight on a platform movable in 3 dimensions

Similar calorimeter already operates at NA61@CERN, and another one called Zero Degree Calorimeter (ZDC) is being prepared for BM@N at NICA.

CBM PSD module design

Module properties:

- 60 lead+scintillator plates in one module
- 1 section = 6 scintillator plates
- size = 20 x 20 x 120 cm³
- depth ~ 5.6 hadron interaction lengths λ_{int} optimized for beam energy range of 2 – 35 GeV

TOP View

FRONT View

Light from each consecutive 6 layers is collected together via WLS-fibers and read-out by a single Hamamatsu Multi-Pixel Photon Counter (MPPC)

MPPC S12572-010P properties:

- size: 3x3 mm²
- large dynamical range: 90000 pixels
- photon detection efficiency: ~10%
- high counting rate: ~1 MHz
- requirement: radiation hardness to neutrons ~2x10¹¹ n_{eq}/cm² for CBM

CBM PSD readout electronics

Preamplifier

- Attached to photodiode
- Optimized for
- high capacitance inputs
- Gain ~ 60 V / V
- Good Signal / Noise

PaDiWa-AMPS (GSI)

- Method: Time-Over-Threshold (ToT)
- 8 MMCX input channels
- Time precision: < 50 ps
- Rel. charge resolution: < 0.5 %
- Dynamic range: 250 500
- Compact data : max. 50 MB/s

TRBv3 Trigger and Readout Board

- 4 FPGAs, 264 TDC channels
- Single edge & ToT measurement
- Time precision < 20 ps
- 50 MHz hit rate per channel
- Fast data transfer via gigabit Ethernet
- Internal trigger and slow control

CBM PSD: Alternative readouts

ADC64s/ADC125s electronics (AFI, JINR, Dubna)

- Method: direct waveform digitization
- 64 channels, 12 bit ADCs
- Speed: 62.5/125 MS/s
- Dynamic range: ~150
- Up to 100 kHz real event rate
- Huge amount of data
- DSP is required on top

Time-Over-Threshold (ToT) board

- Method: Time-Over-Threshold (ToT)
- 8 MMCX input channels
- NINO chip based design
- Dynamic range: ~ 250
- Compact data: max. 50 MB/s
- Coupled to TRB3

Centrality measurement in CBM

Particle multiplicities around midrapidity measured by Silicon Tracking System

Energy measured at forward rapidity measured by PSD calorimeter

Two independent ways to measure centrality. STS generally performs better but can be improved by correlation with PSD by up to 10% for central events

The correlation between the energy deposited in the four central PSD modules (E_{PSD}^1) and the track multiplicity M_{trk} with cuts

Impact parameter resolution

Reaction plane reconstruction in CBM

Particle hits around midrapidity measured by Silicon Tracking System

> Particle hits at forward rapidity measured by Forward TOF

Energy measured at forward rapidity measured by PSD calorimeter

The best for beam energies > 4 AGeV due to

- sensitivity to neutral particles and fragments
- much stronger flow at forward rapidity

PSD reaction plane resolution for four heavy-ion collision models

80

70

30 20

N events 4 AGeV

Does not differ much for different models even though they have very different flow

Why?

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

UrQMD DCM-QGSM LA-QGSM

HSD

PSD reaction plane resolution for four heavy-ion collision models

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

10/22

PSD reaction plane resolution design

PSD-geom., **B=0:** Reconstruction with PSD geometry **PSD-geom.**, **B>0:** Reconstruction with PSD geometry and magnetic field

Granularity is well chosen and produces almost no bias

Magnetic field produces relatively small bias below 10%

CBM PSD supermodule

Array of 3x3 calorimeter modules was assembled for the beam tests at CERN in 2017-2018

All 44+1 modules for PSD are already assembled at INR

PSD supermodule quality assessment by cosmic muons

Light yield of each of 10 individual sections in module was measured by cosmic muons

Identification of muons: equal energy deposition in first and last halves of module

Measurement with horizontal and inclined tracks

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

10²

PSD supermodule at CERN

Supermodule performance was successfully tested at CERN T9 and T10 beamlines

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

14/22

CBM PSD radiation conditions

Enlarged beam hole 6x6 cm² -> 20x20 cm² significantly reduces the radiation damage

up to 30 times less ions hitting the calorimeter

Neutron irradiation of MPPCs at NPI U-120M cyclotron

✓ Hamamatsu S12572-010P MPPCs were irradiated by total fluence in wide range from 6x10¹⁰ up to 9x10¹² n_{eq}/cm²

SiPMs placed at Cyclotron beam line

The p(35)-Be White Neutron Spectra at 0° in NPI $I_p = 9.2 \mu A$ $I_p = 9.2 \mu A$ $I_p =$

5

10

15

20

 E_n (MeV)

25

"White" neutron beam by Be(p) thick target

Courtesy of M. Majerle and M. Štefánik

1E+5

0

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

35

30

Performance of MPPCs in lab

Signal to noise ratio = $Integral_{Signal}/\sigma_{Noise}$

 $2x10^{11}$ neutrons_{eq}/cm² : SNR ~ 50

SiPM signal response was measured during illumination with 10 ns short pulses from 400 nm LED. Pulse height was chosen such that signal was detectable by all the SiPMs.

Performance of MPPCs at CBM supermodule

- Energy resolution dropped only slightly for MPPCs irradiated by 2x10¹¹ n_{ed}/cm²
- Energy resolution dropped in about 1.5 2 for MPPCs irradiated by ~10¹² n_{eq}/cm² but SiPMs were proven to operate even after such a high neutron irradiation

Reconstruction was performed with the noise cut, which was applied individually for each section

Performance of MPPCs at NA61

 Energy resolution dropped up to 2 times for MPPCs irradiated by ~10¹² n_{eq}/cm² but SiPMs were proven to operate even after such a high neutron irradiation

Reconstruction was performed with the noise cut, which was applied individually for each section

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

Performance of MPPCs at CERN

Single module energy resolution versus neutron fluence

- Calorimeter will operate well under irradiation of 2x10¹¹ n_{eq}/cm² which corresponds to 1 year of operation at maximum beamrate of 1MHz
- It will operate further, but at some point damaged MPPCs must be replaced, especially at the center of calorimeter

Preparation of mPSD for mini-CBM

Summary

- Design and performance study of the Projectile Spectator Detector (PSD) for CBM is presented
- Physics performance of the PSD design is demonstrated with help of four different collision models and Monte-Carlo GEANT package:
 - up to 10% resolution improvement for collision centrality with PSD correlated to STS
 - reaction plane resolution is well reconstructed with $\sigma < 40\%$
- All the modules are already assembled, QA with cosmic muons completed
- Energy resolution and linearity were measured with PSD supermodule at CERN and satisfy TDR
 - stochastic term of energy resolution $\sigma_{\rm E} \simeq 54\%/{\rm VE}$
- Radiation sustainability is sufficient for 1 year of operation at maximum beamrate of 1MHz and for whole experiment lifetime with exchange of photodiodes
- Ongoing:
 - > PSD platform design and construction
 - Readout electronics options evaluation
 - Preparation for mini-CBM

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

backup

Motivation for collective flow and **PSD** performance simulations

- The collective flow reflecting the azimuthal anisotropy of the \geq collision is used to study the equation of state of baryonic matter.
- Heavy-ion collision generator consistent with the existing experimental flow data has to be determined for PSD simulations.
- PSD performance for the reaction plane reconstruction has to be simulated. Magnitude of directed flow v_1 affects the reaction plane resolution.
- \geq Effects of the detector granularity and bias due to magnetic field shall be studied during the PSD performance simulation.

In non-central collisions flow of particles is usually described by Fourier decomposition with respect to reaction plane:

$$\frac{dN}{d\varphi} \sim 1 + 2\sum_{n} v_n \cos n(\varphi - \Psi_{RP}),$$

Directed flow Elliptic flow $v_1 = \langle \cos(\varphi - \Psi_{RP}) \rangle$ $v_2 = \langle \cos(2(\varphi - \Psi_{RP})) \rangle$

Modified illustration from C. Cain for STAR

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

PSD

Ratios of v₁

Answer:

v₁ differs a lot at midrapidity, but PSD measures at forward rapidity, where v₁ differs much less!

Centrality measurement in CBM

Particle multiplicities around midrapidity measured by Silicon Tracking System

Energy measured at forward rapidity measured by PSD calorimeter

Two independent ways to measure centrality. STS generally performs better but can be improved by correlation with PSD by up to 10% for central events

Motivation for radiation hardness investigation of Silicon Photomultipliers (SiPM)

- High intensity beams at FAIR SIS100/300 up to 10⁶/10⁷ interactions/s will lead to the high radiation emission to the detectors.
- > PSD calorimeter works as a spallation target with moderator for neutron production.
- Passive parts of PSD including the scintillators are not very sensitive to the neutrons, but the active readout parts including the SiPMs are.

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

Choice of the SiPM

SiPMs with 3x3 mm² area sensitive to 400 – 550 nm light were chosen for the test

	Zecotek MAPD-3A	Zecotek MAPD-3N	Hamamatsu S12572-010P	Sensl uF-C30020	Sensl uF-B30020	Ketek PM-3350
Operating voltage (V)	~ 65	~ 90	~ 70	~ 25	~ 25	~ 25
Number of pixels	135000	135000	90000	11000	11000	3600
Effective pixel size (µm)	8	8	10	29	29	50
Gain	~ 6×10 ⁴	~ 1×10 ⁵	~ 1×10 ⁵	~ 1×10 ⁶	~ 1×10 ⁶	~ 6×10 ⁶
PDE (%)	~ 20	~ 30	~ 10	~ 25	~ 25	~ 40
Pixel recovery time (ns)	~ 2×10 ³	~ 104	~ 10	~ 100	~ 100	~ 200

V. Mikhaylov, PSD calorimeter for CBM@FAIR, XXIV Baldin Conference, Dubna, September 2018

Experiments at NA61 PSD in CERN

Difference between conducted tests

	Summer 2016 and 2017	September 2017	November 2017	
Beamline	NA61	T10	Т9	
Beam momentum range	20 – 80 GeV/c	2 – 6 GeV/c	2 – 10 GeV/c	
Proton selection	Not available	by TOF scintillators	By Cherenkov detector	
Proton selection approx. mom. range	Not available	2 – 6 GeV/c	3.5 – 10 GeV/c	
SiPMs utilized	Irradiated by 4E10, 4E11, 1E12 and 3E12 n/cm ²	Irradiated by 1E12 and 3E12 n/cm ²		
SiPMs calibration of overvoltages	Calibrated by LED relative to the muon calibration of non-irradiated SiPMs	Previous calibration from NA61 was utilized	Relative to the breakdown voltage measured in lab (seems to be more accurate)	
Temperature stabilization	All SiPMs kept at 20 °C	Not available		
Temperature in the test hall	Not available	~ 26 °C	~ 18 °C	

How the signals from 6 GeV/c protons look like

• Very high noise is clearly visible.

V. Mikhaylov, Irradiated SiPMs at PSD supermodule at CERN, CBM Collaboration Meeting 19.03.2018

31/22

Energy scan

Non-irradiated

Irradiated 1E12 n/cm2

V. Mikhaylov, Irradiated SiPMs at PSD supermodule at CERN, CBM Collaboration Meeting 19.03.2018

Noise reduction by the amplitude cut

- The amplitude cut = 15 mV per section was chosen to have the minimal efficiency drop along with the good noise suppression.
- The energy resolution improved by 30 50 %.

* First 5 sections of NA61 PSD module were equipped with Hamamatsu SiPMs

Next steps

 We preliminarily estimated the 1MeV neutron fluence equivalent hardness factor to be: k ≈ 1.5.

Then 1×10^{12} and 3×10^{12} n/cm² translate into 1.5×10^{12} and 4.5×10^{12} n_{eq}/cm².

To be continued

Neutron shielding simulation

- We reduced the neutron flux by 50-70% adding borated polyethylene between the PSD module lead/scintillator blocks and SiPMs.
- Low energetic neutrons are shielded the best, so we reduce the neutrons captured in SiPM by silicon and dopants, especially ¹⁰B dopant having huge n cross-section.

Hamamatsu SiPM performance in lab: Noise

- Dark current increases linearly with neutron fluence and can reach mA range.
- Noise increases in 10 20 times after irradiation.

Hamamatsu SiPM performance in lab: Signal response to LED

- Signal drops to 50% of its original value at neutron fluence around 1x10¹² n/cm².
- Signal to noise ratio drops to 10 at neutron fluence around 1x10¹² n/cm².

NA61: Energy resolution for 80 GeV/c protons

Very high noise was cut out, significantly improving the energy resolution.

* First 5 sections of NA61 PSD module equipped with Hamamatsu SiPMs

NA61: Energy resolution for 20 – 80 GeV/c protons

- Energy resolution dropped in 1.5 2.5 times after irradiation.
- SiPMs were proven to operate even after such a high neutron irradiation.

* First 5 sections of NA61 PSD module were equipped with Hamamatsu SiPMs

Test of Hamamatsu SiPMs response at NA61 PSD: Waveforms

Dark currents

- > Dark currents of SiPMs irradiated by ~ 4e11 n/cm² reach 50 μ A at overvoltage = 2V
- > Dark currents of SiPMs irradiated by ~ 1e12 n/cm² reach 200 μ A at overvoltage = 2V
- Dark currents of SiPMs irradiated by ~ 1e13 n/cm² reach 1 mA at overvoltage = 2V
- We need external power supply (5 channels) for the next tests in CERN!

SiPM details

SiPM structure

Normalized response vs proton beam rate

Hamamatsu S12572-010P

42/11

Details on neutron irradiation experiments

Proton energy = 35 MeV

SiPM breakdown voltage after irradiation

Variation of V_{breakdown} measured for few SiPMs is less than 0.5V.

* SiPMs irradiated by "white" neutron spectrum

Projectile Spectator Detector (PSD)

Principle: detection of forward going projectile nucleons and nuclei fragments (spectators) produced close to the beam rapidity in nucleus-nucleus collisions

Purpose: measurement of the reaction centrality and reconstruction of the reaction plane

Features:

- compensating calorimeter with lead/scintillator sampling ratio 4:1 good energy resolution ~55%/VE
- high transverse granularity by 44 modules transverse homogeneity of energy resolution, reaction plane measurements
- module of 5.6 hadron interaction lengths and transverse size of 20x20x120 cm³ optimized for beam energy range from 2 up to 35 GeV
- longitudinal segmentation: 10 sections/module, 1 section = 6 scintillator plates longitudinal shower profile measurement, calibration
- light readout from a section through WLS fibers by 3x3 mm² Hamamatsu MPPC large dynamic range, no nuclear counting effect
- ability to operate at high collision rate up to 1MHz
- total 22 tons of weight on a platform movable in 3 dimensions

Similar calorimeter already operates at NA61@CERN, and another one called Zero Degree Calorimeter (ZDC) is being built for BM@N at NICA.

