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A LITTLE HISTORY OF THE
QUARK CONFINEMENT

After many years of dramatic and successful development of the atomic project for the
country in the late 50s of the last century, the government of the USSR proposed a new
project to overcome the backlog in the physics of elementary particles.

For this purpose, in Protvino was the most powerful proton accelerator for energy at that
time, with beam energies up to 70 GeV.

And one of the central tasks was to open quarks!

In 1967, the Accelerator was created and the first experiments began.

But Quarks Have not been found ?!

What happened

How is this regarded? Failure? Or Discovery!




The quark confinement is confirmed in
Europe and USA

¢ Confirmation of the experiment in Protvino
* on the non-detection of quarks at the accelerators of

* FermilLab:ln 1972 a large proton synchrotron went into
operation . At first it accelerated protons to 200 GeV,
but by 1976 it had reached 500 GeV

 CERN :The SPS became the workhorse of CERN’s
particle physics programme when it switched onin
1976/The SPS operated at up to 400-450 GeV



Discovery 3-colors
SU(3)- chromodynamics:
Color Confinement

Boronto6os H.H., CtpymuHckun b.B., TaBxennaseA.H.

THE DISCOVERY OF THE THREE QUARK COLOR IN
DUBNA 1965

SU(3c)-gauge group 1973
From 1967 to Color confinement 1974



* 1) 3-QUARK MODEL G-M-spectroscopy
e 2)Parton model + SU(3-c)-gauge interactions

. See-ocean of quarks
. How to quantize
. Proton ? or (P + N)?

e Origin of isotopic group SU(2)



(P,N)+Electron
including the new quantum number
FAMILY NUMBER=3
We have Nc=Nf=3
Or?
Nc=3(c)+1(EI-SU(3c)-singlet)
=Nf=3(SU(3H))+1(SU(3H)-singlet)



Universe
Geometry - Particles Quantum Numbers
EXT Symmetry —INT Symmetry




Universe
Particles Quantum Numbers - Geometry
INT Symmetry — EXT Symmetry
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SYMEMTRY
External and Internal Symmetries




THE WAYS TO GO FURTHER

1) The extension of Minkowsy space-time-D>4
Kaluza-Klein and...
Compactified and global geometry

2)The extension of the symmetry gauge
groups —GUTs,SuSy GUTs

3)Superstring-D-brain approaches
included 1) D=4 and D=10,11,12




Our goal —




WAYS TO FIND NEW NON-TRIVIAL SPACES

1. HYPER BINARY NUMBERS
2.REFLEXIVE PROJECTIVE NUMBERS

3 N-ARY NUMBERS-CYCLIC NUMBERS
4. N-ARY HYPERNUMBERS

5.FINITE GROUPS-NON-ABELIAN CASE
6 CLIFFORD ALEBRAS




THEORIES OF N-ary-NUMBERS

[f the binary alternative division algebras ( real numbers, complex numbers, quater-
nions, octonions) over the real numbers have the dimensions 27, p = 0,1,2,3,4, ..., the
n=3-arv and n=4-ary norm division algebras have the following dimensions n”, p =
0.1, 2,3, respectively:

R M =1 R : 3 =1
C: ' =1+1 TC : 3 =1+1+1
Q: 2 =1+2+1 TQ : P =1+42+3+2+1 (36)
0 P =1434+341 |TO: 3P =143464+7+6+3+1
S: P =144464+441|TS: 3* =1444+104+16+19+16+10 +4 +1
R: 40 =1
NyC: ' =1+4+1+1+1
N,Q 2 =1+243+4+3+2+1 (37)
N,O: P =14346+10+1241241046+43 +1

NS: 4" = 144410420431 4+40+44 440 +31 +20 +10 +4 +1



. RAn-COMPLEXIFICATION

~ FINITE GROUPS
“"  Abelian Cyclic C _n- group
- AUTOMORPHISM RAn ~



Simple cyclic groups C,, = {ala™ = e} of prime order n = 2,3, 5,7,11, . ..
2: (y = {a|a* = ¢}
3: O3 = {a|a® = ¢}

4: Cy = {ala® = €}
'C-'g b4 C;g = {-ﬂ.., b|-ﬂ.2 = 2 = [:{},E',I-:]:E — E]-

6: Cs = {a|a® = e},
Cs = Cy x Oy, C3 x Cy = {a,bla® =1 =e,aba™'b = e},
Sy = Cyx]|Cy = {a,bla® =1 = e, aba = b}

8: Cy = {a|a® = ¢}

Cy x Cy = {a,bla* =1 =e,aba"'h = ¢}

Cy x Oy x Cy ={a,b,cla® =0 =2 =e,ab?, bc? = ac® = e}
Dy ={a,bla® =b* =e.aba = b}.Dy = Cyx]Ch,

Qs = {ala* =1 =e,bl"Yab =al~V }



¢ 9: (g = {a|a’ = ¢
Oy x O = {ﬂ.,b|ﬂ.3 =B =e,ab = ba

¢ 10: Cyp = {a|a" = ¢},
Cs x Cy = {ala® = = e,aba""b = ¢}
~ (s5x]Cy = {a.bla’ =" =e,aba = b}

e 12: Clg—{ | ]
s x Cy = { b|ﬂ = B —E,{}.b(}.[_”ﬂ. — E], Cia =0y x Gy x Oy,
Dﬁ —SQK]C EDqK]Cg
T ={a,b|a® =e,a® =", aba =D}
C3x|Cy = {a.bla* =b* = e, bab = a}



(98)
Using the definition of ternary complex conjugation one can check that only terms
proportional g are not equal to zero, i.e.

Fy(rg, 21, 33) = (15 423 +13 = 3202123 )0,
&

According to table of characters ,what satisty to the previous constraints, one can
introduce two operations of the conjugations in the next form:

- 2 ., 2 2

-

(=i, (=74 ¢=Jq, (60)
where j = exp (2ir)/3.
The generators ¢ and ¢* could be represented in the matrix form:

0 10 00 j
g={ 0035, =100 (61)
700 0 70

where one can infroduce the operation of cyclic ternary transposition operations: 1 —
293 21(32221-3)[104.
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(;Eﬂ + Iy -I-;Il-g){;.;}' [(.‘Ilﬂ - 5(;1’11 -I-;II-;))-‘ + ( 5 (.'II1 - .'II-;))E]{EJ}.

[

(&)

3 3 3
Iy +I) +15 = 3T T3

7|
L= FF]

{2}

Outside the singular region one can define 24 =
Outside the singular region there valid the follow

(1) = () (=), 08)

which indicate about a group properties of these T;C numbers.
The surface-Appel sphere-

—_—

i

ng pseudo norm division identity

[—

3,3, 3 3
T + 1) + Iy = 3010y = p 69)



Using these matrices one can get the temary Dirac-Weyl equation

3‘IJ+ @‘IJ+ v
Iy

0 ) 1

where
0= (I, Uy) 1%)

s triplt of the wave fnctions, .. we Introdued the ternary spinstructuve in A, The
next fermary structures can appear in B spaces

[ order to diagonalize this equation we must act three times with the same operafor
aud e vl get the cubi difrential equation satsed by each compoent ), p=1,2.%



RESUME
ABELIAN N-ARY COMPLEX NUMBERS

* N-ARY EXTENSION OF LIGHTS

* U(lem) ---- U(1)x..xU(1)

 (N-1)-copies!!!
* For N=3 wecould get A NEW EXOTIC LIGHT




ff:: {},” r,,['ﬁ:'r?,njq {::J” :?r,—J> R:::
i i i Ty +a7 =R
g3 G2 G2 r3 — a9 = H”
qs5 s Emif3) g, ry 4+ x + 3 — 3xgriae = R =p - r?
qi G4 (7 2/2) g, (0 — 2)% + (117 — x3)*] - [(wo + 22 — (&1 +23)°] = H? - H3
(23 + 27 — 2xgs]® — |23 + 23 — 2,13]° = R} — R
qi gs = e ™3 g, 23 — 57 + 2woxa]? + [0 — 23 + 23] = R} + R =1
q: Gs = €778y g +x] + x5 + 23 + T — DToT TaT3Ty
ad(riry +xox3) + 23 (ors + x3xy) + a3 (w123 + xp14)
bl (xyws + oy ) + 25 (Tos + T172)}
3Ty 0T 4 Ty lrpry 1L
Fo{ao (w32t + x323) + oy (2223 + 2227)
brg (23 + x32d) + xy(w3x] + xixd) + xy (2325 + 2523 })
qe gs = € g || [(xo +x3)* + (24 I;r:_.;)‘:; - (2o .-!:;:,)‘:‘ 3(xo + xa)(xy + x4 ) (w2 + 25)] |
g — 23 + (21 — 24 ) + (22 — 25 — 3(wg — 23) (1, — 74) (22 — 25)]
[ + ud + ud — 3ugu ]H] [ +vd +v3 — 3wgviva]
(R P = pyrd - pors =1
[(xg + a3 + 2] — 3zgrary)]
3w (23 — xyx5) - (rf .-L.',.-r;) by (23 — xzws )] ¥
{[(z3 + 23 + 23 — 3z 2375]
F3[xy (13 — moxa) + a3 (a2 — xomy) + x5 (23 — oy )]}
(77}~ () =1
qe g = em 3 gg (g + a2 — 23 + 3xgrary)
3lwo (3 — wazy) + 2o (22 + z123) — 24 (23 + 23725)] }2 A
H{[x? — 23 + 22 4+ 3z12375]
3y (23 — xox2)) T3 _(.-r:ﬁ | i!f:g;!{_-]) b s (25 + Toxa )]}
(I + {5 =1




THE NON-ABELIAN N-ARY NUMBERS-

HAMILTONIAN WAY

TWO N-ARY IMAGINARY NUMBERS

FOR BINARY CASE-QUATERNIONS:
q0,91,92,93

UNIT QUATERNIONS :SU(2)-group !

Representations of SU(2)- Spins!!!




THE NON-ABELIAN N-ARY NUMBERS

FOR BINARY CASE- UNIT IMAGINARY
QUATERNIONS:

ql=i,q2=j,q3=k
su(2)-Lie algebra
Basis for Killing-Cartan-Lie classification




KILLING-CARTAN-LIE GEOMETRY

* “TRIVIAL" CLASSES OF HOMOLOGY

 SIMPLE SET OF THE BETTI-HODGE NUMBERS
* N-dim SPHERES-

* N-dim HYPERBOLOPIDS,...



BERGER-CALABI-YAU SPACES

HODGE DIAMOND
. =(|d 2 2
with g =(ldz | + .. *ldz |°)

HOLONOMY (g) = SU(n)

(n,0) parallel form

dz1 dz p }
b = =
no b Oon 1
n>p>0




TOWARDS TORUS GEOMETRY-




CY n-SPACES CLASSIFICATION
and n-ary algebra of
REFLEXIVE PROJECTIVE NUMBERS

IT WAS THE REASON TO
GO TO THE N-ARY HYPER NUMBERS
NEW NUMBERS ---
NEW SYMMETRIES-
NEW GEOMETRY+NEW MATTER
= NEW UNIVERSE



In the new notations we have got the following expression

0 = [tne+aghn) 4 g+ o 45 g 45+ 1)

=yt 3+ 21, ) 4 {00 )

i



f{:l-!-!

}

in 9-dimensional space [43, 104]. For this one should calculate the product Zwm{@@
what in general contains ifself 9 x 9 x 9 = 729 terms, i.e.

-

Q A Q b4 @ = Aﬂ (.‘Kﬂ,...,.‘i’?g)f}'ﬂ + ;41_ (.‘II ){h +... 315 (;II{],...,;KH)QS (HU)

[n general in this product one can meet inside A, (p = 0,1, ...,8) the following term
structures:

T p=0,1,...8

Tylk,  PFT
gl pEEEL

Bl S
)

(141)
For this expansion one can easily see that

729 =9 (x) — terms) + T2 x 3 (g — terms) + 84 X 6 (zpre — terms).  (142)



Really, following to the articles [43],[104, 103/ one can construct the ternary nonion-
algebra for g, and introduce the following matrix:

0=8
()=

1=(

{.‘I:ﬂlqﬂﬂ]

@T = @i = Q Ternary Hermitian Conjugation [155)

/ Iyt jq.']!IT + j?qg.'l’}g I+ (0 + qg.‘Eg Iyt jq.'l':ﬁ + qug;z:ﬁ \
Iy (5 + qg.'l':ﬁ gt jiq.!}; + qu;ﬁg Ij+ jq.'l}g + j?qg.i},q

\;E1+jf3q.‘l}g+qu.'1:3 ;I:4+jf3q;1:5+qu$ﬁ ;z:ﬂ+q;1:;+q'3;z:3 /
130
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=8 o + jarr + Py m+qra +qtny  xa+ jgus + e
Q= Z{Eaéa] Ty +qus + @16 10+ FPar + jgPTs 11+ jgms + gt

a=0 Ty + fPquy + jitrs T4+ FPars + jg7tg  To +qr7 4¢Pz
0 21 %
29 é{] fl . (158)
51 é:z “0

Then we define the SL(3, TC)- invariant norm of the ternary "nonion” numbers:

DEH:J = (3{])3 + (3 )H + (3;3)3 - (3(]313;3 + fﬂflfg + 5[]5152)
(159)
where
2 =30 +Irq +33¢0 Fo =T + jarq + s =29 + 727q + jr3q’

2 =01+ Taq + I3 F =2y 4 jTaq + FTaq 2 =m Fraq+ jrsg® (160)
% =Ty + 50+ 26q° Z =Ty + jrsq + et 7 = T4+ JFrsq 4 jreq”



e 8.

. (- complexification of R" Euclidean spaces

Euler formulas for C- eyelic complex numbers

. Pythagoras theorem in R"

. Infinite series of n-dimensional Abelian invariant hypersurfaces

. Holomophical analysis and Caushi-Riemann equations

. Dim = n-Laplace equations

. Linear differential invariant equations for n-spinors

Cyclic hypercomplex numbers and non-Abelian structure of AMK — 04- hyper-

surface



RESUME
ABELIAN N-ARY COMPLEX NUMBERS

* N-ARY EXTENSION OF LIGHTS

* U(lem) ---- U(1)x..xU(1)

 (N-1)-copies!!!
* For N=3 wecould get A NEW EXOTIC LIGHT




RESUME
NON-ABELIAN N-ARY COMPLEX

NUMBERS

* N-ARY EXTENSION OF THE
* FERMION-BOSON MATTER

EXOTIC 1/n SPINOR MATTER-MAARKRIONS

For N=3 we could get geometrical explanation of
the three colors- three families ?!




CONCLUSIONS

THE WAY TO QUANTIZE
PROTON+NEUTRON ....
ON THE NEW 1/N-SPINOR MATTER?
THIS EXOTIC MATTER RADIATES
A NEW N-ARY LIGHT??
WHAT ACCELERATOR COULD CHECK???

THANKS YOU VERY MUCH!



1. Standard Model and new space-
time geometrical structure

of the Universe

The geometrical basis of the modern quantum field theory sucessufully
describing the

U(1)EM- electrodynamic processes, the SU(3c)-gauge quantum
chromodynamics and the

electroweak interactions based on the SU(2)WI x U(1)Y - gauge broken
symmetry is our

space-time world what can be represented as a homogeneous and
isotropic D = (3 + 1)-

four-dimensional continuum. The symmetry properties of the spatial and
temporal continuum

describe by the Lorentz-Poincar’e groups and its representations and
some fundamental

discrete symmetries- P, T,C.



Space-time geometrical structure

of the Universe

This space-time continuum can be immersed into

much huge comprehensive multidimensional
world.

The modern experimental data derived

from the elementary particle physics and
astrophysics allow us to estimate the sizes

of the expanding visible part of the continuum
Amin £ \ £ Amax.



THE DOWN-UP QUARK MASSES

DEPEND ON THE E-M CHARGE

AND ON THE NUMBER OF GENERATIONS
(NEW CHARGE - ORIGIN FROM D=67?)

mik

i, (q

(¢")*mg k=0,1,2; ip =u, i =c¢, isg =1,
d)gk k= D? 1:29 E'[] = d:' E.1 =5, i? = l]j':'

& U

m

(1)
where ¢* = (¢%)%, q* ~4 -5~ 1/, A =sin 0.

THE FERMIONS MASSES AND W-Z-BOSONS
COULD

DEFINED BY THE E-W SCALE
M- EW-SCALE THE PHASE TRANSITION
BETWEEN TWO VACUUMS?7??

23.09.2018



CBOWNCTBA HEUTPMHO O MHOITOMEPHOM
OBOBWEHUN TEOPUU OTHOCUTENBHOCTU

MNPEACTABJ/IEHNA [PYTifibl  J/IOPEHL- NYAHKAPE

1. CnuH s=%
2. MaliopaHo-Belineeckaa npupoda - 2-x KOMIMKAEKCHble cmerneHu c80600bI

3. Macca m =0(eV)

JJ/IEKTPOMAITHUTHAA CTEPUJIBHOCTb
4. 3apso Q (EM)=0

5. MaeHumHsili momeHm Mag=0(0)

(V-A)- CJ/TABAA CBA3b C 3J/IEKTPOMATHUTHBIM ~ MUPOM

6. Bzaumoodelicmesue cnaboe




1967 ---------- 2017(STO-M(1,3))

WS-SU(2)XU(1)-Model
SU(5) and SO(10)—GUT
Strings + Superstrings

M11- Superrgravity+Kaluza-Klein
Compactifications

Heterotic SuperstringsE(8)XE(8) Models and
K6=CY_3- compactifications

4-dim SS with WS Fermions
D-Membranes
M11, M12 — and String Duality



A) cTaHAApPTHLIN
DsA2=dx_072-dx_172-dx_2-...-dx_n”"2-.....

Lie algebras and groups SO(p,q)n=p+qg — space-
time groups and double covered Spin(p,q),...
B)Non-standard ways.....T_mnk...

New symmetries ----- >new groups and algebras,
theory of new numbers...

New geometry- BCY_n, Group algebra Spaces,...



1 Theories of Numbers in Geometry and in Physics.I

The further progress in modern models of elementary particles and cosmology is related
to the searching for new Riemann and tensor structures in multidimensional spaces D > 4
based on the theories of new hyper-numbers, new algebras and new symmetries. The tra-
ditional geometry of Riemann and pseudo-Riemann symmetric homogeneous compact and
non-compact spaces was associated to the classification of the Killing-Cartan-Lie algebras,
according to the theories of binary hyper-numbers,- the well-known real-R, complex- C,
quaternions- H, octonions-O- normed division algebras.



TOWARDS A N-ary
MATHEMATICS+PHYSICS

THE WAYS TO EXTRA WORLD
1)BCY- SU(n), G2 - Holonomy Geometry

2)Theories of the Cyclic C_n- Complex
Numbers

3)Finite Group Algebras
MASS CHARGE SPIN ...???




9 The n-ary Algebra of Reflexive Projective Num-
bers and CY-classification

ACY, s jaco can be realized as an algob@}lc variety M in a weighted projective space
CP"'( k) where the weight vector reads k = (ki,....k,). This variety is defined by

= ({zy,..., 20} ECP”_l(k P(zy, .. ZHT = (6)

L.e., as the zero locus of a quasi-homogeneous polynomial of degree

di=) ki "
1=1

with the monomials being

g =M g™ 8)



6 Berger classification of non-symmetric Riemann
spaces

Firstly, in 1955, Berger presented the classification of irreducibly acting matrix Lie groups
occur as the holonomy of a torsion free affine connection. The Berger list of non-symmetric
irreducible Riemann manifolds with the list of holonomy groups H of M one can see.

Table 2: The list of Berger classification for non-symmetric Riemannian spaces.
M Grson Hy, Dimg | metrics
General — SO(n) n
Kahler - U(n) C O(2n) n
Calabi - Yau — SU(n) C SO(2n) 2n
Hyper — Kahler — Sp(n) C SO(4n) in
quaternion— —Kahler | — | Sp(n) x Sp(1) C SO(4n) | 4n
exceptional — G(2) C SO(7) T

exceptional - spin(7) C SO(8) 8




K3-Manifolds ( BCY 2)

G Ky

Ci’CliC — (0}0,0’1)—.
dihedral . (0,0,1,1) .
tetrahedral 0,1,1,1)——
octahedral 0,1,1,2y—
icosahedral 0,1,2,3) ——

ext

ks

|

(0,0,0,1)—
(0,0,1,1)«——
(0,1,1,1)«——
0,1,1,2).
(0.1.2.3)-

G
l

cyclic
dihedral
tetrahedral
octahedral

icosahedral




CY3-Newton polyhedron k=(11248)

Y

S
S

R

S

S~
NS

<
—<

—n

S<




K3 polyhedron

(1023) + (0,1,2,3) =(1,1,4,6)[ 12]

L Weierstrass triangle

1)
O E(8) { diagram

(1)
O E(8) diagram

23.09.2018




Cartan-Lie Dynkin diagram Affine Kac-Moody diagram

1
o o o o '/\.
1 1 1 1 ¢ o
1 1 1 1
1 ® —

Affine binary—ternary Berger diagram

23.09.2018



MHOIFOMEPHOE PACLUMPEHWUE CNELMANBHON TEOPUM OTHOCUTENBHOCTY

1MpUHUMN MAKCMMaNbHOCTU CKOPOCTU CBeTa byaeT cnpaBeannB TONbKO ANA
3aPAKEHHOro Bakyyma To ecTb AnA YacTul, 061a4atoWmX 3/1EKTPOMArHUTHbIM
3apagom TemMHasa maTepua U CTepUbHOEe HEUTPMHO MoryT pacnpoCcTPaHATLCA C
ropasao 60nblWLMMKM CKOPOCTAMM

2 MHoromepHoe ob6o6uieHme rpynnbl JTopeHua npeanonaraeT CyLecTBoBaHme
ZIpyroro 6ycrta 1 BO3MOKHOIO pallMpeHns NOHATUA BPEMEHU AaKe 3a cyeT

CTPYKTYPbI
3 NPUHUNUN OTHOCUTE/IbHOCTU TaKXKE MOMKET I'IOTpQGOBaTb paclmnpeHnA

3a cyeT NoABNEHUA HOBbIX HeKOMI'IaKTVI(bI/ILI,MDOBaHbIX pa3MepHOCTEVI

CTPENKM BPEMEHU NN CTPENKU NPOCTPAHCTBA. [103TOMY NOABNAKOTCA HECKO/IbKO
BO3MOXXHOCTEN MOWUCKA NapameTpa sHeprumn “BetpoBon”’nnm “remnepatypHon”, ot
KOTOPOI MOXET 3aBMCETb CKOPOCTb HEMTPUHO N Mbl MPUBENU ABE CXEMbI
3KCMNEPUMEHTOB- 3TO AO0/IXKHbI PEWNTb OyAYLINE SKCMNEPUMEHTDI

23.09.2018



Cartan-Lie Dynkin diagram Affine Kac-Moody Dynkin diagrar.

le 0 !
2. .2
2 2 1
@ @ 3 3 & & ©
2 © ® 2
1 @ o,
1 1
@,
0 I2
3 3 3 3
e © e () o e
1 2 o D 2 1
2 2
10© .1

Affine binary-ternary Berger diagram

23.09.2018



Cartan-Lie Dynkin diagram Affine Kac-Moody Dynkin diagrar.

le 0 !
2. .2
2 2 1
@ @ 3 3 & & ©
2 © ® 2
1 @ o,
1 1
@,
0 I2
3 3 3 3
e © e () o e
1 2 o D 2 1
2 2
10© .1

Affine binary-ternary Berger diagram

23.09.2018



COMPLEXIFICATION OF RAn

We will discuss the following themes:

o (- hyper-plural division numbers

e (- complexification of R"- spaces,n = 3,4,5,0, ...,

o ("- structure and the invariant surfaces, n = 3,4,5,6, ....

e ("- hyper-holomorphic and hyper-harmonic functions

e The link between C"-holomorphism and the origin of n-spinors




GEOMETRY OF BINARY HYPER NUMBERS

i = 12€eR Il
J| = d4ii=1¢C lh
0 = 4e4ai4ot =0+ |5 =1k |
0 = et 4= [Qf +]0P=1€0 1




In the last lines one can see the sedenions which do not produce division algebra. For
both cases we have the unit element eg and the n basis elements:

R — TC - TQ —» TO — TS
R — NyC — NyQ — N;O — N4S
(51)



CONJUGATIONS CLASSESS AND ONE
DIIVIENSIONAL REPRESENTATIONS

2
R
R

1
-1

—_ |

o2 2

The cyclic group Cy has three conjugation classes, qg, ¢ and ¢, and, respectively, three
v O O r U ) ! J)
one dimensional irreducible representations, RY i =1,2,3. We write down the table of
. i
their characters, 55 )

(]t a )

1T 11

N D 68
52‘) l J3 Js )
\5(” 132 jy )




CONJUGATIONS CLASSESS AND ONE
DIIVIENSIONAL REPRESENTATIONS

2
R
R

1
-1

—_ |

o2 2

The cyclic group Cy has three conjugation classes, qg, ¢ and ¢, and, respectively, three
v O O r U ) ! J)
one dimensional irreducible representations, RY i =1,2,3. We write down the table of
. i
their characters, 55 )
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Ternary hyper-numbers

One can mtroduce the Tollowing basis forms:

Reversely
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E
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Ternary hyper-numbers

The surface

3133 _ 3
Ly + 27+ Ty — 3rpT 129 = p 82)

(see figure ?7) is a temary analogue of the S* circle and it is related with the ternary
Abelian group, TU(1).

From the above figure one can see, that this surface approaches asymptotically the
plane g+ 11+ 9 = 0 and the line 2y = 71 = 5 orthogonal to it. In T4C they correspond
to the ideals I, and I3, respectively. The latter line will be called the “trisectrice”.

One can compare this cubic surface to the quadratic surface -cylinder- what can be
consider as equation 2% + 23 = 1 in the C ® R-space. This fact could be accepted as
the first success of the ternary complex numbers of binary complex numbers what can be
embedded onlv into even dimensional R* space.



47 41= 42
q47 9:=(qz
q4; 4=

qdig7=] Q2
Uz 47=] Q3
Gz 47= ] 4

< N > e
4 “ (s* =

=
7" = (s

Q1 Q2 q3=j* gy 42 Q143= J Qo
Q4 93 46 = j* qq (s Q446= ] Qo
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TOWARDS THE D+5,6- DIMENSIONAL EXTENSION

OF LORENTZ GROUP

(on B )(12 B Xzz B X32) f (st--)

2 2 L2, 2\/y 2 2
(X =% =X2" =X )(Xs" = X5")
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R*"n-COMPLEXIFICATION WITH FINITE GROUPS

Abelian Cyclic C _n- groups and Non-Abelian Groups
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ABELIAN CYCLIC GROUPS

A representation of the group G is a homomorphism of this group into the multiplica-
tive group G'L,,,(A) of nonsingular matrices over the field A, where A = R, C or etc. The
degree of representation is defined by the size of the ring of matrices. If degree is equal one
the representation is linear. For Abelian cyclic group €, one can easily find the character
table, which is n X n square matrix whose rows correspond to the different characters for
a particular conjugation class, ¢“, @ = 0,1,..,n—1. For cyclic groups C,, the n irreducible
representations are one dimensional ( see Table):

/ _ 1 q .. qa qn—l\
1 1 I ... 1

D11 e e gy

(66)

\ M1 g e )
where the characters can be defined through n-th root of unity. For example, if the

character table for (), can be summarized as

~(y ~v iy f1 EY 45y /0 i1 4 1 0y Y e =y



The )y, operators with k=0, 1,2, .., 8 satisfy to the following ternary S5 commutation

relations:

[ {kim] = [n} | Sitm I~ ] [klen]} = [n] | et I w1 [kim] = [n} | it
1 [O0,1,2] = [6} = ag {1,2.3] = [0} wa &7 [2.4,7} =@ 5]
2 [O,1,3] — [5} _—flg an {1,2,4] = [2} 1 o8 [2.4,8) =@ o
2 | {o,1,4} — [0,7,8] {u,n, ﬁ} a1 {1,2.5) = [1} 1 fets] [2.5,6] — [6] —1
1 [0,1,5] —@ =] az {1.2,6] =@ i G0 | 2,5, 7] — [0,7,8] {_f!,_l,_%}
G [0,1,6] — @ 8] aa {1,2.7] = [6} —4f § 61 | {2,5,8] — [0,7,8] {_ \ﬁ,u, 1}
[ [0.1, 7] — @ ] 34 {1. 2,4} = [5} w2 G2 [z.6, 7} =@ ]
T [O0,1,8] — [1} -3/ 3 a5 {1,324 = [a} —1 [Ex] [2.6,8) =@ o
B [o,2,38]) — [4} 7‘2 ai {1,3,5] =@ o Gd [2.7,8] = (2] ﬁ
o [O0,3,4] = @ & a7 [1. 3. 6] — [1] —1 [ [, 4,5 =@ [&]
1 | {o,2,5} — [0, 7,4] {u, ;ﬁ;, _“} a8 {1.3,7} = [B} V"? G [2.4,6] = [4] 1
11 [0,2,6] — @ [5] ad {1,3,8]) = [G} W2 G7 [3.4,7} =@ o]
12 [o,8,7] — [2} _T:E A0 {1,4,5]) — [B} —1 [i [3.4,8) =@ [i]
13 [o,2,8] = [2} :‘: A1 {1,4,6] = [6} 1 [ [3,5,6] — [4] —1
14 [0,3,4] =@ 8] a2 | [1,4,7} = {0,7.8] {u,u,:‘g 70 [3.5,7} =@ [u]
15 [0,3,5] =@ 0 a3 | [1,4.8} = {0,7.8] -Ilf'E, -.,-'i,cuj'- 71 [3.5,8) — 0 0
16 | {o0,3,6} — [0, 7,4] {'L—;'!.—”} A4 {1.6,6] =B o 72 | {2,6,7T) = [0,7,8] -'L_ fz,l,_:ﬁ;}
17 [0,3,7] — [3} ;'E FH {1,6, 7] =@ i ta | {3,56,8] — [0,7,8] {_ﬁ,n,_L}
18 [D.3,8] — [2} -lg; i {1.6,8] = B o Td [2.7,8] = [2] 455
12 [O.4,5]) = [3} _?JE A7 {16, 7} =0 1] 75 [4.5,6] — [0] -
a0 [O,4,6] — [2} ?15 FE] {1,6,8] =@ i T [4,5,7] — [3] \.-"IE
a1 [0,4,7] =@ =] ET) {1.7.8} — [1} %5 7 [4.5,8] = [2] —'2
a3 [O,4,8] — [4} \I.-'E oo {2,3,4] =@ i T8 [4,6,7] — [2] _v@
EE) [0,5,6] — [1} _-g 5l {2.3,5} — [a} 1 TH [4.6,8] = [2] —2
24 [0,5,7] — [5} ;':5 52 {2.3,6} — [2} 1 B0 [4.7,8] — [4] —:5-3
a5 [o,6,8] = [5} _T:'E i} {2.3, 7} = [4} 3\.-'@ B1 [B.6,7] = [1] -4 32
a6 [0,6,7T] — [6} _;IE oid [2,3,8] =@ i B2 [G.6,8) —d 5]
a7 [O,6,8] = {6} _:fg 55 {2,4,5} = [a} —1 =3 [&.7,8]) — {5] -=
25 [0, 7,8] =@ [5] Tt [2,4,6] =@ i Ed [6,7,8] — [6] - ’3

We have got 84 comummtations relations. One commutation relation, {Qn, Q7. Qsts, =
(), provide the Cartan subalgebra. Let separate the rest 83 commutation relations on the 5
groups( 18+ 184+ 27418 42). The first group contains itself the following 18 commmmtation




TEMbBI

O HAYYHO-MPAKTHMHECKIMX PABOT CTYOEHTOE WM ACMMPAHTOE ,

YHIMTEIBAKLUMX HAYYHBIE HAMPABMNEHWMA MCCAEOQOBAHIMA. NPOBOAMMBIX B HIMY-&
1.MPAMATEPIMA M1 OBPAROBAHWE BCEMNEHHOIA.

HECTABEMNbBHOCTb MPOTOHA 1M MOCT — AAEPHAA 3HEPTETMHKA .

LUBETOBAA KBAPKOBAA MOOENb HYHMNOHOB — AOCTHMMHEHMA WM MPOBMAEMbI IAMMPAHMA LUBETA
NMPOBMEMbI AJEPHOM ©@M3KMKKW - KBAHTOBAHWE HYHAOHOB — MPOTOH + HEMITPOH .
NMPOBMAEMbl TPOMRCTEBEHHOCTIM MATEPMKW. HOBLIE BMAblI HECTABMNBHOM MACCMBEHOMN MATEPIA.
CTPYHTYPA SMTEKTPOHA.

MPAMATEPKMA M1 EOAWMHAA MOAOEMNE HYHNOHOB WM SMEKTPOHA (P,N,E).

POMNbE MPAMATEPKMIM B MPOLUECCAX OBPA3OBAHWMA INMEKTPOMAIMHMTHO -2APAMEHHOM
AOEPHOM M AENTOHHOM MATEPKIA.

MPOBAEMA AHTIM - BELLLECTBA.

NMPOBMEMbBbI MOCTPOEHIMA FTEQMETPMIM BCEAEHHOM: AOMNOAHMWMTEABHBIE MPOCTPAHCTRBEHHLIE
M2MEPEHIMA 11 BTOPOE BPEMA

PACLUIMPEHWME TEOQPKMI OTHOCWMTEABHOCTM KM HOBLIE BKAbl IHEPTKK.

TEQPHMA WM MNMPAKTHMHECKWME MNMPHMMEHEHKMA.



of light in Minkowsky (D = 3 + 1) space-time. Absence of singularities in such a spacetime
allows you to enter the gauge invariance in a region, which can connect two kinds of
matter: the matter substance and radiation. The substance described by the fundamental
fermion fields with spin 1/2[4], G.Weyl,[11], and radiation - gauge fields with spin 1. The
question of maintaining gauge invariance may depend on the existence of singularitiesin
this space-time, which can be a source of symmetry breaking. This option is actually

a violation of gauge symmetry associated with the existence of space-time singularities
at small or large distances. Note that the existence of singularities at small distances

can lead to a change of the Riemann metric and, therefore, to a dynamical violation of
space-time Lorentz symmetry ( see for example, [7]).



Thus the formalism of quantum field theory includes the geometric foundation

of space-time picture of the "visible “world and the operator-functional methods of describing
a matter moving and interactingin this environment. But now some phenomena

in physics of elementary particles pose the question the need to expand our notions of

space and time?! In this case the first question arises of dimension and signature of a

new hypothetical world. In our opinion, now modern science close to understanding to

the origin of the visible part of universe defined by a D=(3+1)-dimensional space-time
continuum, obeying to the laws of absolutism speed of light, and the observable fermion
matter of which has the “unified” electromagnetic nature. In articles [2], [19] it was
suggested that only the Dirac fermion matter can satisfy to the laws of absolutism speed



LIE algebras SO(3,1) and SL(2C)

The Lie algebra of Lorentz group SO(3, 1) is isomorphic to the
algebra of its double covering

Spin(3, 1) = SL(2C)-group
the irreducible representations of what can

be defined by two integer or semi-integer numbers (u, v) of the
finite-dimensional representations of the SU(2) xSU(2) group.

The minimal representations of this group are

Scalar (0, 0) representation

Weyl spinors, (1/2, 0)L- and (0, 1/2)R-representations
what are related by P -parity operation (and complex conjugation):

x0->x0, x->-x,(1/2,0)-> (0, 1/2).



HAYAIO SU(2) SWxU(1) Y

To describe the | - charged weak currents

and combine them to the EM- currents in Weinberg-Salam
model SU(2)WI x U(1)Y it

was used the ideas of the Heisenberg SU(2)/ - isotopic group
and the following relation

Q(EM) =1 3+ Y/2.

As one of the main result of a such model it was predicted the neutral

weak interactions what was experimentally confirmed in GARGAMELLE CERN neutrino
experiments in 1974 year. In this model the P- violation (C-violation) was constructed by
hands taking the left- and right handed fermions in different SU(2) WI - representations.
For breaking the gauge symmetry in Weinberg- Salam model it was used the mechanism
in the internal sector of the model what predicted the existence of a new fundamental
scalar particle- Higgs boson.



. Mechanism of the appearance of

the masses of gauge bosons and fermions is enough
formal and it is not clear its link to

structural changes of the space-time. At least , in spite
of preliminary of strong indications

and a lot of discussions CERN plans to continue these
experiments for the future cycle

of LHC-collider work with planing to get much more
the energy of the proton beams.

Fermilab also resumed the work on the improvement
of the Tevatron to finally clarify the



nature of signals detected at CERN collider at energy of 125 Gev. One can propose that

the role of the weak sector of the Standard Model is the way to understand the origin

of the visible universe. More suppressed processes going to the CP- violation may be
associated with an unknown dynamics at the more smaller distances ~ 102 16F 17cm. In
addressing this issue again we faced with the dilemma of the mechanism of these phenomena:
defects of the space-time geometry or/and a new dynamics related to the new

interactions ? Obviously the issue is closely related to another important problem - the
existence of three quark-lepton families. All experimental information on three family

mixing and CP-violation can be encoded into the Cabibbo-Kobajashi-Maskawa (CKM)-

matrix parameters which also requires explanation!



The 3- family mixing explanation is

completely going into the mass origin problem. In
the second case one should again to

study the problem related to the local gauge
symmetry breaking - "Higgsology” or unknown

a space-time singularity structure. In the depths
of this phenomenology is waiting

for us very rich physics what can shed light on the
production the visible part of Universe!



Towards a new spinor-fermion
structure

we do not define the fermion matter that fills the
space-time continuum should have a universal
property, i.e. Dirac half-one fermions|[2].

[GV],[AV].

It means that we can imagine the existence of exotic
fermion matter, for example,

having another spin 1/n, n 2 3 and without an
electromagnetic (color) charge

nature. In this picture our visible Dirac Universe
forming a topological cycle could be

embedded into Meta - Universe having much more
reach the space-time topology



.Asa

messenger between the cycles we suggested neutrinos with Dirac mass equal to zero.

To construct the spin 1/n fermion theories first one should find out the examples of

the geometrical spaces having such a spinor structure [19],[20],[22]. Taking into account
a possibility to imply the spaces with arbitrary spin structure in formulation of the basic
principles of the string theory one could significantly expand the assumption touching
the D- dimensional pseudo-Lorentz space, in which the string is moving . We think that

in this case the string and superstrings theories could considerably extend the set of
predictions for modern physics of elementary particles. In according to such geometrical
objects one can search for new symmetries, what we already started to study in the class
of n-ary symmetries with corresponding n-ary algebras what already have been discussed
in literature, for example, [6],[22], and reference there.
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SU(3/¢c)XU(1)XSU(2)XU(1)xSU(3H)XU(1H)
4-dimsuperstrings
With World-Sheet Fermions(1992Padova)

Table 2: The list of (llldlltlllll numbers of the states. Model 1.

N7 [ busb. ba. ba b b ]| S0ma [UGY UG UG UGE)? vi v vy
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1 1 5 3 0 0 1 1
02012(6)0 5 | 5 | 1 0 I 0
¢ 1 3 1 3 0 1 0 1
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1 3 1 0 1 -1 0
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10 | 1 1 1/2 3/ 0 0
W 030000 1 1 1 1 5/2  3/2 0 0
5 1 1 1 3/2 3/2 0 0
10 3 | | 1/2 1/2 0 0
3 001130 —; 2 1 1 1 3 0 —3/2 0 172
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CBOWNCTBA HEUTPMHO O MHOITOMEPHOM
OBOBWEHUN TEOPUU OTHOCUTENBHOCTU

MNPEACTABJ/IEHNA [PYTifibl  J/IOPEHL- NYAHKAPE

1. CnuH s=%
2. MaliopaHo-Belineeckaa npupoda - 2-x KOMIMKAEKCHble cmerneHu c80600bI

3. Macca m =0(eV)

JJ/IEKTPOMAITHUTHAA CTEPUJIBHOCTb
4. 3apso Q (EM)=0

5. MaeHumHsili momeHm Mag=0(0)

(V-A)- CJ/TABAA CBA3b C 3J/IEKTPOMATHUTHBIM ~ MUPOM
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Letter of Intent

Measurement of Neutrino Velocities
at the CERN WANF
using Bare Target Neutrino Beams

F. Dydak, J. Ellis, V. Falaleev, J. Gareyte
CERN, CH-1211, Geneva 23, Switzerland

V. Ammosov, G. Gapienko, G. Volkov
Institute for High Energy Physics

RU-142284 Protvino, Moscow region, Russia

Abstract

String/D-branes theories might establish the connection between the geometrical
properties of the gauge forces, the associated vacuum and the role of the "sterile”
particles. It was pointed out that the speed of a "sterile” particle can be differ from
standard expectations of the Special Theory of Relativity.
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