

Influence of Intense Coherent Electromagnetic Radiation on Several Types of Radioactive Decay E.V. Barmina², G.A. Shafeev², I.A. Shcherbakov², A.V. Simakin², <u>V.I. Stegailov¹</u>, S.I. Tyutyunnikov¹

¹Joint Institute for Nuclear Research, Dubna, Russia, snsed@yandex.ru ²Prokhorov General Physics Institute RAS, Moscow, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

-Эксперименты проводились в рамках проекта «Энергия и Трансмутация РАО» и были направлены на решение задачи изучения характеристик ядернофизических процессов, происходящих в ядрах под воздействием когерентного электромагнитного излучения.

Целью экспериментов является изучение механизмов влияния электромагнитного излучения СВЧ диапазона и лазерного излучений на вероятность радиоактивного распада ядер в т. ч. ¹⁵²Eu , ²³⁹Np и др. , а также, с другой стороны, исследование методами ядерной спектроскопии каналов радиоактивного распада облученных нуклидов.

Нами исследовался распад ядер ¹⁵²Eu, ¹³⁷Cs, ²³¹Th, ^{234Th}, ²³⁹Np при воздействии лазерного излучения на их водные растворы. Особый интерес представляет хорошо изученное и детально исследованное ядро Eu¹⁵². 1) Раствор Eu¹⁵² подвергался воздействию излучения лазера с длиной волны излучения 1064 нм, частотой следования импульсов 10 Гц, энергией в импульсе 700 мДж. 2) Для сравнения, использовался другой лазер с длиной волны излучения 1064 нм, частотой следования импульсов 10000 Гц и энергией в импульсе 1 или 2 мДж. Необходимо отметить, что при сокращении частоты следования импульсов в 1000 раз и увеличению энергии в импульсе в 700 раз, общая тенденция (эффекта) уменьшения активности сохраняется.

Lasers: Nd ¹³⁴Cs Plasma ¹⁵²Eu femtosecond Ti:sapphire, 90-ps Nd:YAG, spectrometer 声 cooling 350-ps Nd:YAG, Gamma 10-ns Nd:YAG **Colloidal** water solution of radioactive salt cooling I and metal nanoparticles **Repetition rate** window from 10 Hz up to 20 kHz **Power density** from 1*10¹¹ W/cm² up to 1*10¹² W/cm² Laser beam

Layout of the experiment on irradiation of water solution of the radioactive salt by the medium-power laser in presence of the metallic nanoparticles

Ядро 152 Еи, (²³⁹Np)

для исследования которого использовался Nd лазер с длиной волны 1064 нм, длительностью импульса 10нс, частотой 10 кГц, энергией в импульсе - 2 мДж.

Излучение фокусировалось с помощью линзы сквозь прозрачное для него окно стеклянной кюветы на мишень 152 Eu, (²³⁹Np), помещенную в водный раствор.

В таких условиях происходит образование наночастиц в растворе, ответственных за плазмообразование, и коллективные эффекты ускорения электронов в плазменном канале.

Концентрация наночастиц определяется близостью перетяжки лазерного пучка к мишени и временем лазерного облучения облучения.

Lasers: Nd femtosecond Ti:sapphire, 90-ps Nd:YAG, 350-ps Nd:YAG, 10-ns Nd:YAG

Power density

from 1*10¹¹ W/cm² up to 1*10¹² W/cm²

Laser beam

Layout of the experiment on irradiation of water solution of the radioactive salt by the medium-power laser in presence of the metallic nanoparticles

Ядро 152 Еи, для исследования которого использовался Nd:YAG лазер с длиной волны 1064 нм, длительностью импульса 10нс, частотой 10 кГц, энергией в импульсе - 2 мДж.

Излучение фокусировалось с помощью линзы сквозь прозрачное для него окно стеклянной кюветы на мишень ²³⁹Np, помещенную в водный раствор.

В таких условиях происходит образование наночастиц в растворе, ответственных за плазмообразование, и коллективные эффекты ускорения электронов в плазменном канале.

Концентрация наночастиц определяется близостью перетяжки лазерного пучка к мишени и временем лазерного облучения облучения.

---Выбранный нами изотоп ¹⁵²Eu распадается посредством β^+ -распада, электронного захвата (EC) и β^- распада, т.е. $\lambda = \lambda(\beta^+) + \lambda(EC) + \lambda(\beta^-)$.

Распад ядра ¹⁵²Еи

Распад ядра ¹⁵²Еи

Гамма-спектр при распаде ¹⁵²Eu

16 дней

- 1. Величина эффекта
- 2. Как бета плюс так и бета минус распад.
- 3. Эффект памяти (результата).
- 4. ---- процессы в мишени (в ядре)
 ----процессы в окружении мишени
 ----сравнение результатов (плазма и воздух)

ДАЛЕЕ РАССМОТРИМ :

152Eu – ИЗМЕРЕНИЯ ПРИ ОБЛУЧЕНИИ ПОТОКОМ ИЗЛУЧЕНИЯ 30 Ггц

152Eu:

Образец ¹⁵²Eu, внедренный в алюминиевую фольгу толщиной ~25мкн, облучался в течение 6 часов СВЧ-излучением (30 Ггц) с плотностью потока ~50×10⁻³ Дж/см².

Далее спектр гамма-излучения ¹⁵²Eu исследовался на распад, т.е. исследовался спад интенсивности излучения наиболее сильных переходов в спектре гамма-лучей в зависимости от времени, в течение 90 дней.

Sample of ¹⁵²Eu in leakproof teflon container

Layout of the experiment on RF irradiation of the ¹⁵²Eu sample

View of the ¹⁵²Eu sample before and after the RF irradiation

CBH ¹⁵² **Eu**, **y 121.8**

Время экспозиции одной точки 8 ч.

---Это также возможно интерпретировать как накопление долгоживущего (9.3 час) изомера в ядре ¹⁵²Eu, соответствующего (первому) основному состоянию нечетно-нечетного ядра ¹⁵²Eu в результате нарушения (возбуждения) нами сложившегося равновеия в ядре ¹⁵²Eu.

ЯДРО ²³⁹Np (Z=93)

-- Особый интерес представляет ядро актинида бета-минус распадчика. ²³⁹Np, для исследования которого использовался тот же

Nd:YAG лазер с длиной волны 1064 нм, длительностью

импульса 10нс, частотой 10 кГц, энергией в импульсе - 2 мДж.

Experiment	H. R. Reiss	INP Tomsk	JINR	GPI RAS
Frequency, GHz	4x10 ⁻³	3	30	3x10 ⁵
Power density, W/cm ²		8x10 ⁴	3x10 ⁵	1x10 ¹¹
E-field strength, V/m	4,4x10 ⁵	8,5x10 ⁵	1,8x10 ⁶	~ 3x10 ¹² ?
Radioactive isotips	¹³⁷ Cs	⁵¹ Cr	¹⁵² Eu	¹³⁷ Cs, ²³⁸ U, Np
E-field concentrators	No	No	May be	Yes
Activity increasing, %	6x10 ⁻⁴	1x10 ⁻²	10x10 ⁻²	(7_10) x10 ⁻²
«Memory effect»	No	Yes	Yes	Yes, ()

Comparison of experiments on Hi frequency, RF and lasers

---- аппаратура (кремниевые дет.)

---- ренген. спектры (процессы в рентген. об.)

--- изомерия в ядрах (эффект памяти)

---процессы в плазме (воздухе)

ПРОБЛЕМЫ необходимые нам решить:

ИЗМЕНЕНИЕ АКТИВНОСИ 137Cs

Период полураспада цезия-137 – 30 лет

²³⁴Th activity during several sessions of laser irradiation of UO₂Cl₂ water solution in presence of Au nanoparticles as the laser wave concentrators. ¹³⁴Cs is a reference sample

Спасибо за внимание !