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The task of the experiments of the CREMA Collaboration (Charge
Radius Experiment with Muonic Atoms) in 2010-2018 is the
measurement the fine and hyperfine structure of the spectrum in
light muonic atoms (muonic hydrogen, muonic deuterium, muonic
helium ions ...); determination of the charge radii of the proton,
deuteron, helion, alpha particle with an accuracy of 0.0005 fm.
One of the obtained results is connected with the hyperfine
splitting (HFS) of 2S-state in muonic hydrogen:

AE!®(2S) = 22.8089(51) meV/. (1)

exp

@ A. Antognini et al., Science 339, 417 (2013).
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One of the future tasks of CREMA is to extend the laser
spectroscopy experiments of muonic systems to the elements of
lithium and beryllium... and to improve the values of charge radii
and the Zemach radii of light nuclei

[@ S. Schmidt et al., The next generation of laser spectroscopy
experiments using light muonic atoms arXiv:1808.07240.

@ R. Swainson and G. W. F. Drake, Phys. Rev. A 34, 620 (1986).




A part of the Breit Hamiltonian, responsible for hyperfine splitting,
has a known form in the coordinate representation:

B dro(l + a,)pn

A Vhfs
5 (1) 3mimps,

(s182)d(r), (2)
where the masses of the muon and nuclear will be denoted further
my, mp, mp is the proton mass, py is the nuclear magnetic
moment in nuclear magnetons, a, is the muon anomalous magnetic
moment (AMM), s; and s, are the spins of a muon and nucleus.
The potential AVé’fs gives the main part of hyperfine splitting of
order a* which is called the Fermi energy:

223 1Py

2 1
e 22 D) 3)

EF(HS) =

where n is the principal quantum number, = mymy/(my + my).



The Fermi energy is obtained after averaging (2) over the Coulomb
wave functions. In the case of 15- and 2S5-states they have the
form:

3/2
dio(r) = ——e™, W =pZa, (4)
_ W3/2 —Wr/2 Wr
1,[)200(") = Ee <1 — 7) . (5)

The muon AMM correction to hyperfine splitting is presented
separately taking experimental value of muon AMM:

AE}®(nS) = a,Er(nS). (6)

Numerical value of relativistic correction of order a® to HFS can
be obtained by means of known analytical expression:

3(Za)2EF(1S)

(20 R Er(2S) g

hf:
AErels(ns) = {
Next, we investigate a number of basic corrections to the hyperfine
structure of S-states in order to obtain acceptable total result.
Numerical values of different corrections are presented for
definiteness with the accuracy 1072 meV.



Nuclear structure corrections play important role in the calculation
of hyperfine structure. They are determined by the electromagnetic
form factors of the nuclei. Among the nuclei that we are
considering, several nuclei have a spin s, = 3/2. The amplitude of
the one-photon interaction:
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kaks (P2 + q2)u oy kaks kY _ >
a2 2mm Fs(k7) 2 O 2, Fa(k*) }vs(q2)-
Oupp is the vertex function of the spin 3/2 nucleus. Nuclei with a
spin 3/2 are described by the spin-vector v, (p). Four form factors

F,-(k2) are related to the charge Ggg, electroquadrupole Gg»,
magnetic dipole Gp; and magnetic octupole Gpz form factors:

Geo = (1 4 27) (it 7(Fi = F)] = 2L+ )[R + (R — Rl (9)
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It is useful to consider how the magnitude of the hyperfine splitting in the
leading order (the Fermi energy) can be obtained from the amplitude M.
When two moments are added, two states appear with the total angular
momentum F =2 and F = 1. To distinguish the contribution of the amplitude
My to the interaction operator of particles with F =2 and F =1, we use the
method of projection operators, which are constructed from the wave functions
of free particles in the rest frame. Thus, the projection operator on a state with
F =2 is equal to

flo = [6(0)7a(0)]F—> = 12;;%56&6, (10)

where the tensor £, describes a muonic atom with F = 2. As a
result, the projection of My, to the state with F = 2 takes the
form:
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where auxiliary four-vector v = (1, 0,0, 0).



For further construction of the particle interaction potential from the
amplitude, we use the averaging over the projections of the total angular
momentum F which is connected with the calculation of the following sum:

* - 1 1 1
Y eincap = Marap = 5XBaXnp 5 X5 Xaa =3 XaaXap, Xga = (gap—VsVa).

pol

(12)
To introduce the projection operators for another state of hyperfine structure
with F = 1 we use the following expansion:

2 1
Vo,—3/0 F=1,F, = \/;wS:O,F:I,FZ + ﬁwS:l,F:I,FN (13)

the Rarita-Schwinger spinor vo(p) for the state with s, = 3/2 is presented as a
result of adding spin 1/2 and angular momentum 1. With this method of
adding moments, the total spin S can take two values S =1 and S = 0. When
calculating the matrix elements for the states Woir, and WiiF,, we successively
perform the projection on the state with spin S =0, S = 1, and then on the
state with the total angular momentum F = 1. The corresponding projection
operators have the form:

N 1470
Aa(S=0,F=1) = — Y rsen, 14
( ) 3 Vs (14)
ﬁa(S = ].7 F= 1) = 1+ V’Yo-an‘pwVpgw7 (15)

w

€“ is the polarization vector of the state with F=1.



Then the matrix elements of My, according to the states of Wo1r, and Wyif,
are reduced to the form:
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In addition, the off-diagonal matrix element < Wo;f, |iMi(F = 1)|W11g, > is

also nonzero. The sum of all the matrix elements gives in the nonrelativistic

approximation the following value of the hyperfine splitting (the Fermi energy):
16 17« ﬁ _16a(Za)*?

hfs
AEl'y = EF(HS) = 3 i F2(O)7Tn3 = W,&N (18)

The expressions for the amplitude My, are presented in a form that is
convenient for the subsequent calculation of the contribution in the Form
package. We present in detail the results of calculating the amplitude My,
since this calculation technique is used later in the calculation of two-photon
exchange amplitude shown in Fig. 1. In the case of nuclei with spin s, =1/2
and s, = 1 the similar technique of projection operators was used in our
previous works.

a b

Figure: Nuclear structure effects of order a®. The bold point denotes the
nucleus vertex function.



Basic contribution of the nuclear structure effects of order a® to the hyperfine
splitting is determined by two-photon exchange diagrams. It is expressed in
terms of electric Gg(k?) and magnetic Gu(k?) nuclear form factors in the form
(the Zemach correction):

hfs __ 2MZOZ/% Ge(K*)Gm(K?) _
AEg,, = Er - o G (0) 1]. (19)

We have analysed numerical values of correction (19) for different
parameterizations of nuclear form factors: Gaussian G£(k?), dipole G2 (k?) and
uniformly charged sphere GZ(k?):

1
——, GE(K) =

GS (K2 :e—%r,z\,kz7 CP(Kk) = — -

3 [sin kR — kR cos kR] ,
(20)

where R = v/5ry/+/3 is the nucleus radius, A> = 12/r3.



A comparison of functions G2(k?) for different parameterizations is
presented in Fig. 2 for the nucleus gLi. In the range 0.1 < k < 0.4 GeV
there is a difference between functions (19) which leads to different
numerical values of the Zemach correction.
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Figure: Gaussian (dashed), dipole (dotted) and uniformly charged sphere
(solid) parameterizations of nuclear form factor G2(k?).

The momentum integration in (19) can be done analytically, so that the
Zemach correction with the Gaussian and uniformly charged sphere
parameterizations has the form:

2
pZary, AELE, = E7\/_uZoer (21)
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Acting as in the case of the one-photon interaction, we can present
the contribution of two—photon interactions to HFS at F = 2:
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We also give for completeness analogous expressions for two states in (13) with F =1, S =0and F=1,5=1:
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As a result the value of the hyperfine splitting is determined in Euclidean space

by the following formula:
d*k
X (25)
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When investigating this expression, it is useful to distinguish the Zemach
correction, which is determined by the integral

. 2 2 2 -
ksin” ¢dkddP(k)R(KT) = )/O %Fl(kz)Fz(kZH (26)
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The divergence in the first term on the right-hand side of (26) is compensated
by the subtraction term

64 (Za)? oo 2m2F,(0
nefh = 2V g [T 2RO, @)
9 w2 (my + mp)k?

Thus, we have in (25) the main contribution (the Zemach correction) and the

recoil correction my/mo.



The form factors F,-(k2) are expressed in terms of Ggo, Gg2, Gmi, Gus for which
the Gaussian parametrization is used in numerical calculations of integrals with

respect to k. The values of the form factors at zero have the form:

m m
Geo(0) = 1, Gu(0) = 2EN ' Gry(0) = m3Q, Gums(0) = =2 m2Q.  (28)
myZ myZ
The nucleus parameters of lithium, beryllium and boron.
Nucleus Spin Mass , Magnetic dipole Charge radius, Electroquadrupole Magnetic
GeV moment, nm fm moment, fm?2 octupole,
moment,
nm-fm?
gLi 1 5.60152 0.8220473(6) 2.5890 + 0.0390 -0.083(8) 0
TLi 3/2 | 653383 3.256427(2) 2.4440 £ 0.0420 ~4.06(8) 75
3 Be 3/2 | 839479 -1.177432(3) 2.5190 =+ 0.0120 5.20(4) 4.1
0B 3 9.32699 0.8220473(6) 2.4277 & 0.0499 8.47(6) 0
;B 3/2 | 10.25510 0.8220473(6) 2.4060 + 0.0294 4.07(3) 7.8

Different parameters of light nucleus (Li, Be, B) were investigated in electron
scattering experiments (H. Uberall, G. H. Fuller). Some of them are unknown
with good accuracy, but, nevertheless, one can obtain approximate estimates of
the corresponding contributions.

D H. Uberall, Electron scattering from complex nuclei, Academic press, NY,
London, 1971.

[ G. H. Fuller, Jour. Phys. and Chem. Ref. Data 5, 835 (1976).



Another correction for the structure of the nucleus of order a®, which must be
discussed, is obtained as a result of the expansion of nucleus magnetic form
factor. The contribution to the interaction potential and HFS in this case has
the form:

s V¥ deY
AV (1) = g i (5152) V6 1), (29)
DBl = 2127%%, 3 L (nS). (30)
a b c

a

Figure: Nuclear structure effects in one-photon interaction (c) and in
second order perturbation theory (d). G is the reduced Coulomb Green's
function.



In second order PT we should take into account a term in which the potential

% ﬁ (sin kR — kR cos kR) — 1 (31)

is considered as a perturbation. After the Fourier transform we obtain:

Avsfr,l'\/(k) = -

Avsfr,l'y(r) =

4R3 (r— R)(r +2R)(R — r+|r — RJ). (32)

Using the Green's function we perform the analytical integration in second
order PT. It gives the following result:

211/2
AEN

L opt(15) = —EF(15)

4 RW
[7775(753 +15C +15In RW + Ty (—154+4C+4ImRW)], (33)

RPwW?
AEME  (25) = Ep(29)

str,sopt

4 RW
[%(—107 + 60C + 60 In RW) + T(17 —8C —8InRW)], (34)

where we present an expansions in (RW) up to terms of first order in square
brackets (RW (SLi) = 0.038, RW (5Li) = 0.036, RW(3Be) = 0.050,
RW(B) = 0.060, RW(£'B) = 0.060).



One-loop vacuum polarization potential in coordinate representation is defined
by the following integral expression:

. dogn(l+ a,) o /°° m2€% o
A Ve — HeNAZ T du) _ e&
tyou(r) 3mm, (s152) 37/, p(&)dE | mo(r) , e s
(35)
a b c d

Figure: Effects of one- and two-loop vacuum polarization in one-photon
interaction.



The contribution of order a® to hyperfine structure of 1S— and 2S-states
(a1 =me/W, W = pZa):

2(7.03,,3 o 2.2 oo m
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12(1 — 10a + 6631 — 16047 + 256a} ) arctan \/4a? — 1}.

We present in detail these results to demonstrate the general structure of the

EF(2S

obtained analytical expressions. After integrating over particle coordinates, the
results have a fairly simple form, but the following integration over the spectral

parameters gives, as a rule, rather cumbersome expressions.



Two-loop vacuum polarization potentials have the form of a double and a
single spectral integral in coordinate space:

dragn(l + ay)

AV p(r) = TR 10 (207 (7 pera [ ptapan (39)
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Figure: One- and two-loop vacuum polarization in second order PT.

~ Zap? e >
Gis(r,0) = ~— —a15(), a1s(x) = [4x(in2x + )+ 4x® — 10x — 2] , (a1)
- Zap? e */? 3 5
Gas(r,0) = ===~ —as(x), &2s5(x) [4x(x = 2)(nx+ €) +x° =137 + 6x +4] ,  (42)



General structure of two-loop contribution (b) takes the form:

AEDS o =2<y|AVE,, - G- AVSY > . (43)
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—x(142men
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8Li:0.05 meV $Li:0.01 meV
ILi:0.20 meV ILi:0.02 meV
AE}E,(1S) = { §Be: —0.21 meV; AE}S,(2S) =< 3Be: —0.02 meV.
B :0.65 meV 9B :0.06 meV
$B:1.11 meV $B:0.11 meV

(48)



There is another correction for the polarization of the vacuum, which also
includes the effect of the nuclear structure. To calculate it, it is necessary to

use the potential Vo, (k). As a result, the contribution to the HFS spectrum is
determined by the following expression:

hs 212 Z3a* [ Voo (K)d*k
Exyvp = — on2n3 - k3 (49)

[5k> — 12mek® — 6(k*> — 2m2)\/k2 + 4m2 Arcth]

el A

Figure: Two photon exchange amplitudes accounting for effects of
vacuum polarization and nuclear structure. The wavy line denotes the
photon. The bold point denotes the nucleus vertex function.

T




The results already obtained clearly show that the corrections to the structure
of the nucleus are dominant. In this connection, it seems useful to consider
another correction for the structure of the nucleus of order a® shown in Fig. to
refine the results. The amplitudes of two-photon exchange with radiative
corrections to the muon line can be calculated in the framework of the
calculation method formulated in Section Il. For a radiative photon, the
Fried-Yennie gauge is used, in which each of the amplitudes (muon self-energy,
muon vertex correction, amplitude with the spanning photon) can be
represented by a finite integral expression. The general structure of the
amplitudes is the following:

it = O [ @) Dus(WDA)x  (50)

[7(P2)0ssDsr (P2 + K)Orrava(a2)].

The lepton tensor L, is equal to a sum of three terms coming from three
amplitudes: o
Luv = Lo, + LS + Lf,’,’yf’Sh. (51)

iy i
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Three types of contributions of order Era(Za) to HFS of muonic ions:
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(52)

(53)

(54)

(55)



The dependence of basic corrections of order o® on the nucleus is shown in Fig.

30 35 40 45 50
z

Figure: Relative order contributions d in percent of vacuum polarization
(solid line, order @®) and nuclear structure (dashed line, order a®) to
hyperfine structure of muonic ions of lithium, beryllium and boron.

The uncertainty, due to the electromagnetic form factors of the nuclei, can be
about 1 percent of the correction to the structure of the nucleus of the order
a®. Thus, we estimate approximately the errors in the calculation of the HFS
spectrum in the form: §E"®(SLi) = £1 meV, 6EM(LLi) = +4 meV,
SE"(3Be) = £4.5 meV, SE"™(°B) = +14 meV, E' (' B) = £24 meV.
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There is another correction for the polarizability of the nucleus, which is not
considered in this paper. The correction for the polarizability is of order
O(Zamzi/my), so its possible numerical value for different nuclei (0.6 meV
(L), 1.8 meV (ILi), -1.6 meV (2Be), 4.7 meV (:°B), 7.3 meV (5'B)) is
comparable in magnitude to those errors that are connected with errors in
measuring nuclear form factors. At the same time, it should be noted that the
correction for the polarizability for a deuteron substantially exceeds this
estimate. Therefore, its exact calculation becomes a very urgent problem. Our
work in this direction is in progress.

[§ 1. B. Khriplovich and A. I. Milstein, J. Exp. Theor. Phys. 98, 181 (2004).

@ A. |. Milstein, I. B. Khriplovich and S. S. Petrosyan, J. Exp. Theor. Phys.
82, 616 (1996).

[d J. L. Friar, G. L. Payne, Phys. Rev. C 72, 014002 (2005).

8 K. Pachucki, Phys. Rev. A 76, 022508 (2007).



No. Contribution to the splitting (o gLi)2+, meV (1 %Li)2+, meV
1S 2S 1S 2S
1 Contribution of order a?, 1416.07 177.01 5026.00 628.25
2 Muon AMM contribution 1.65 0.21 5.87 0.73
3 Relativistic correction a® 1.02 0.18 3.62 0.64
4 Nuclear structure correction G; -109.92 G: -13.74 G: -369.25 G: -46.16
of order a® U: -112.02 U: -14.00 U: -376.31 U: -47.04
5 Nuclear structure and recoil G: -0.20 G:-0.03 G: -30.67 G:-3.83
6 Nuclear structure correction 3.35 0.34 10.67 1.08
of order o in 1+ interaction
7 Nuclear structure correction in second -2.56 -0.90 -8.19 -2.90
order perturbation theory
8 Vacuum polarization contribution 5.22 0.67 18.54 2.38
of order o in first order PT
9 Vacuum polarization contribution 12.05 1.11 42.83 3.94
of order a” in second order PT
10 Muon vacuum polarization contribution 0.08 0.01 0.29 0.04
of order a® in first order PT
11 Muon vacuum polarization contribution 0.09 0.01 0.31 0.04
of order a® in second order PT
12 Vacuum polarization contribution 0.07 0.01 0.24 0.03
of order a® in first order PT
13 Vacuum polarization contribution 0.14 0.02 0.53 0.05
of order a® in second order PT
14 Nuclear structure and vacuum -1.62 -0.20 -5.85 -0.73
polarization correction of order af
15 Nuclear structure and muon vacuum -0.14 -0.02 -0.51 -0.06
polarization correction of order of
16 Hadron vacuum polarization 0.06 0.01 0.21 0.03
contribution of order o®
17 Radiative nuclear finite size -0.34 -0.04 -1.24 -0.15
correction of order o®
Summary contribution 1325.02 164.65 4693.40 583.38




No. Contribution to the splitting (n gBe)3+, meV
1S 2S
1 Contribution of order a4, -4353.49 -544.19
2 Muon AMM contribution -5.08 -0.64
3 Relativistic correction a® -5.57 -0.99
4 Nuclear structure correction G; 441.09 G: 55.14
of order a® U: 44954 | U:56.19
5 Nuclear structure and recoil G: -97.71 G: -12.21
6 Nuclear structure correction -17.57 -1.78
of order a® in 1+ interaction
7 Nuclear structure correction in second 12.64 4.36
order perturbation theory
8 Vacuum polarization contribution -17.97 -2.30
of order o” in first order PT
9 Vacuum polarization contribution -42.62 -3.92
of order o® in second order PT
10 Muon vacuum polarization contribution -0.34 -0.04
of order a® in first order PT
11 Muon vacuum polarization contribution -0.36 -0.05
of order a® in srcond order PT
12 Vacuum polarization contribution -0.24 -0.03
of order a® in first order PT
13 Vacuum polarization contribution -0.54 -0.05
of order a® in second order PT
14 Nuclear structure and vacuum 5.31 0.66
polarization correction of order b
15 Nuclear structure and muon vacuum 0.55 0.07
polarization correction of order o®
16 Hadron vacuum polarization -0.25 -0.03
contribution of order a®
17 Radiative nuclear finite size 1.44 0.18
correction of order o®
Summary contribution -4080.71 -505.82
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