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QCD phase diagram. Critical end point (CEP)

Trajectories calculated by a 3-fluid hydrodynamics model 
Toneev & Ivanov

If the trajectory is in the vicinity of the 
critical endpoint – abnormal fluctuations 

can be observed

Experimental challenge: fluctuation signal may be suppressed due to final state interactions 
that washed out the signal. Real CEP signal should show consistency in several observables! 

Observables - event-by-event fluctuations:
 multiplicity, charge number
 particle ratios
 mean pT, azimuthal angle
 baryon number
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Track selection criteria:

1) |η| < 1.6

2) nHits ≥ 20

3) TPC edge cut (removes tracks

with significant difference between simu-

lated and reconstructed momenta)

Data set:

1) UrQMD v3.4 generator

2) Au + Au

3) √s: 4, 7, 9 and 11 GeV

4) Impact parameter: 0..1 fm

MPD detector: data set and selection criteria

PID is based on the latest version 

of the realistic tracking.

It takes into account as many 

TPC response details as possible.
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General idea of Particle Identification (PID)

Parameterizations: 
dE/dx (mean, sigma, delta and amplitude vs momentum)
m2 (mean, sigma and amplitude vs momentum)

TPC
partial

probability

TOF
partial

probability

ECAL
partial

probability

... Combined
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dE/dx parameterization

Bethe-Bloch function (5 parameters)
to associate with the average dE/dx:

Asymmetric gaussian function:
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Sources of asymmetry:
1) Strong dE/dx dependence in low momenta
2) Truncation cannot remove asymmetry
3) Etc...
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p±

Illustration of dE/dx parameterization

σ´= σ
0
(1+δ)

σ
0

The ratio of dE/dx value in asymmetric gaussian peak over dE/dx value expected 
from Bethe-Bloch is used to estimate the PID parameterization quality. It has been 
performed for all types of particles included in MPD PID.

Typical value of σ0  is 6%,  σ´ is 8%
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m2 resolution (from STAR)

m2 parameterization

p

K

π

Red lines depict 3σ bands

Due to TPC-TOF mismatch 
(~10%)

dE/dx – OK,
m2 is far
from expected

TPC-TOF mismatch:

TPC tracks and TOF hits can be mismatched. This effect is significant 
in low momenta. Typical example of TPC-TOF mismatch is shown on 
the left. PDG-kaon m2 value has been incorrectly reconstructed for 
~10% of tracks with 0.3 < p < 0.4 GeV/c. The fraction of the 
mismatched tracks decreases to ~2% in high momenta region.

How to deal with mismatches?

The suggestion is to ignore the TOF information and identify them by 
dE/dx value,but only for low momenta particles (p < 0.8 GeV/c).

m2 resolution (from MPD)
doi:10.1016/j.nima.2005.11.251
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eff=
correctly identified

reconstructed

cont=
incorrectly identified

identified

Step-like behavior of the

efficiency and contamination 

arises as a result of redirection 

to the dE/dx identification

Combined PID efficiency and contamination, 0 < |η| < 1.6
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Conditions for cumulant measurements
 Cumulant measurements are carried out within

|y| < 0.5 and 0.3 < pT < 1.8 GeV/c

 For event-by-event fluctuations study both dE/dx and dE/dx + TOF
PID have been applied

 Only protons have been counted instead of “proton minus
anti-proton” number (due to poor anti-p yield)

 Typical value of efficiency p in this region is 92% (protons are wasted
due to tracking uncertainties, TPC-TOF mismatching, PID, cuts etc.)

Contamination < 1%

p=
μRECO
μMC

~92%

p



10XXIV Baldin ISHEPP September, 17 – 22, 2018

Cumulants:

k1=⟨N ⟩

k2=⟨(δN )2 ⟩

k3=⟨(δN )3⟩

k 4=⟨(δN )4 ⟩−3 ⟨(δ N )2 ⟩2

σ2=k2

S=
k3

k 2
3 /2

K=
k 4

k2
2

μ=k 1

Moments:

if Ki is a cumulant associated with 
MC-distribution and ci with the measured 
one with detecting efficiency p, the 
relation between them is following:

pK1=c1

p2K 2=c2−c1(1−p)

p3 K3=c3−c1(1−p2)−3(1− p)( f 2−c1
2)

p4 K 4=c4−c1 p2(1− p)−3 c1
2(1−p)2−

−6 p(1− p) f 2+12 c1(1−p) f 2−

−(1−p2)(c2−3 c1
2)−6 c1(1−p)(c1

2−c2)−
−6(1−p)(f 2+ f 3)

where f i=⟨
N p !

(N p−i )!
⟩ ─ factorial moment.

δ M= σ
√N ev

δ(σ 2)= σ
√2N ev

δ S=√ 6
N ev

δ K=√ 24
N ev

correction procedure:
Adam Bzdak and Volker Koch
arXiv: 1206.4286

Corrections to cumulants and moments (very preliminary)
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σ2, S (skewness) and K (kurtosis) have 
been calculated for proton distributions 
in Au + Au collisions (UrQMD generator, 
impact parameter 0..1 fm, ~50K events). 
Such combinations of moments (see 
Figure) are directly related with the 
thermodynamic susceptibilities in lattice 
QCD.

k3

k2

=Sσ
k4

k 2

=K σ2

It is observed that this correction 
procedure does not work well. It can 
stem from our assumption that detection 
efficiency p is a single number. However, 
this does not imply that in each event i 
the number of observed particles is

ni=pN

So, in order to improve correction 
results, local detection efficiency p(y, pT) 
has to be used instead of the global one.

Corrections to cumulants and moments (very preliminary)



Summary
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● Particle identification (PID) based on Cluster 
Finder tracking has been developed and 
implemented within the MpdRoot software 
package. Effective π/K separation is working 
up to 1.5 GeV, π/p separation is working up 
to 3 GeV.

● Cumulants of proton distribution are calcula-
ted within |y| < 0.5 and 0.3 < pT < 1.8 GeV/c.
Correction procedure has been applied to 
them, however, it can be improved.

XXIV Baldin ISHEPP September, 17 – 22, 2018


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

