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Quantum system, Environment , Decoherence
(Haken, Hake, Peres)

❑ Interactions of some quantum system with the environment can be effectively 
represented by additional stochastic terms in the Hamiltonian of the system. 

❑ The density matrix of the system is obtained by averaging of the general density 
matrix with respect to  degrees of freedom of environment

❑ Interactions with the environment result in decoherence and relaxation of 
quantum superpositions. Information on the initial state of the quantum system 
is lost after suficiently large time

❑ Quantum decoherence is the loss of coherence or ordering of the phase 
angles between the components of a system in a quantum superposition

❑ D. can be viewed as the loss of information from a system due to the environment 
(often modeled as a heat bath)

❑ Dissipation is a decohering process by which the populations of quantum states 
are changed due to entanglement with a bath 

❑ Relaxation usually means the return of a perturbed system into equilibrium. Each 
relaxation process can be characterized by a relaxation time τ.

https://en.wikipedia.org/wiki/Quantum_coherence
https://en.wikipedia.org/wiki/Phase_angle
https://en.wikipedia.org/wiki/Quantum_superposition
http://en.wiktionary.org/wiki/decoherence
http://en.wikipedia.org/wiki/Heat_bath
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium


Stochastic QCD Vacuum
(Ambjorn; Simonov; Dosch )

❑ The model of QCD stochastic vacuum is one of the popular phenomenological 
models which explains quark confinement (WL decreasing) , string tensions and 
field congurations around static charges

❑ Only the second correlators are important and the other are negligible (which are 
important in coherent vacuum where all correlators are important) (Simonov )
(Gauss domination) It has been confirmed by lattice calculation Shevchenko, 
Simonov . The most important evidence for this is Casimir scaling [Ambjrn J, 
Olesen P, Peterson].

❑ It is based on the assumption that one can calculate vacuum expectation values 
of gauge invariant quantities as expectation values with respect to some well-
behaved stochastic gauge field 

❑ It is known that such vacuum provides confining properties, giving rise to QCD 
strings with constant tension at large distances



Stochastic QCD vacuum as environment
(Kuvshinov,  Kuzmin, Buividovich )

❑We consider QCD stochastic vacuum as the environment for 
colour quantum particles and average over external QCD 
stochastic vacuum implementations.

❑ Instead of considering nonperturbative dynamics of Yang-
Mills fields one introduces external  environment and 
average over its implementations

As a consequence we obtain: 

❑ decoherence of quantum superpositions

❑ information lost and confinement of colour phenomenon

❑White objects can be obtained as mixtures of states 
described by the density matrix as a result of evolution in 
the QCD stochastic vacuum as environment



Colour decoherence
(Kuvshinov,  Kuzmin, Buividovich )

Consider propagation of heavy spinless colour particle along some fixed path γ. The
amplitude is obtained by parallel transport

In order to consider both colour particle and QCD stochastic vacuum (environment) we
introduce the colour density matrix

After the averaging over all environment degrees of freedom –decoherence due to
interaction with environment, we obtain transition of pure colour states into a mixed white
states with expression for density matrix

g is coupling constant, lcorr – correlation length in the QCD stochastic vacuum, F - average of 
the second cumulant of curvature  (Dosch; Simonov) Density matrix becomes diagonal  
ρout=diag (1/Nc)

In the case of  stochastic (not coherent) QCD vacuum in confinement region (Wilson loop 
decays exponentially) we have decoherence of pure colour states into a mixed white states

We have decoherence



The decoherence rate of transition from pure colour states to white mixture can be 
estimated on the base of purity (Haake)

P=Tr ρ 2

When RT tends to 0, P → 1, that corresponds to pure state. When composition
RT tends to infinity the purity tends to 1/Nc, that corresponds to the mixture (equal
probability to find any colour)

The rate of purity decrease is
Left side of the equation is the characteristic time of decoherence proportional

to QCD string tension and distance R
Von Neumann entropy: S = 0 for the initial state and S = ln Nc

for large RT-increases
The information of quark colour states I=1-S/lnNc is lost due to interactions

between quarks and confining non-Abelian gauge fields, corresponds (no-cloning
(Park), no-hiding ((Braunstein, Pati) theorems. For multiparticles (pure separable,
mixed separable and nonsepaparable (entangled) when RT→∞ we obtain
diagonalization of density matrix, decreasing of purity and fidelity, information,
increasing of Von Neumann entropy

Thus mixture (equal probability to find any colour) can be obtained as a result
of decoherence process from pure colour states

Decoherence rate, Purity, Von Neumann entropy, Information



Interaction of Colour Superposition with QCD Vacuum
(Kuvshinov, Bagashov )

When the initial (pure) colour state is a superposition of colour
states

The corresponding density matrix is

After integration and averaging

When RT→∞

Density matrix becomes diagonal  ρout=diag
(1/Nc) 



Purity, Von Neumann entropy, Information for Colour
Superposition

PurityEntropy

S=(1-N-1
C )(1- ln

𝑊𝑎𝑑𝑗(𝐿)

𝑁𝑐
)

• For the initial stateRT →0: purity P → 1 -pure state,  entropy S→O

• Asymptotically RT→∞:  P=NC
-1-fully mixed state,entropy  S=lNC

-Interaction of an arbitrary colour superposition with the QCD stochastic 
vacuum at large distances leads to an emergence of a  mixed state
-With equal probabilities for different colours
-Without any non-diagonal terms in the corresponding density 
matrix ρout=diag (1/Nc) 



Evolution of Two Particle States
(Kuvshinov, Bagashov)

• Consider two quark system. Every quark is subsystem wth colour and anticolour.

• Consider the next possible states and their evolution in stochastic vacuum:

• 1) on purity - pure, mixed

• 2) on separability – separable, nonseparable (entangled)

• In the case of mixed separable the system is described by density matrix not by

• Vector state

• Under the same reasoning we obtain new density matrix as the result of 
evolution (in the basis of corresponding state vectors) and easily obtain 
information on changes of purity and entropy

• We see the diagonalization of density matrix, increasing of entropy and 
decreasing  of purity



Np-particle states in QCD Vacuum
Density Vatrix, Purity, Von Neumann entropy

(Kuvshinov, Bagashov))



Purity, Von Neumann Entropy 

↓ RT→∞

Purity decreases,  Entropy increases

RT=0



(Kuvshinov, Marmysh, Shaporov)

= Nonperturbative (NP) effects in jets

Role of NP effects in particular :

❑confinement and hadronization

❑exact YM field equations, solutions, ex. instantons,    
vacuum properties

❑long distances, soft collisions, diffraction

❑power corrections

❑NP evolution

❑MC hadronization models, LPHD

On possibility of squeezed and entangled states in QCD



Gluon   Evolution

Consider gluon self-interaction Hamiltonian of QCD

Take jet ring with cone angle

In terms of  annihilation (creation) operators 

Here 



Gluon  Evolution

Hamiltonian V has squares of operators of annihilation and creation.

As it is known from QM and QO such structures in evolution
Hamiltonian are nessesary condition of Squeezing States (SS) production

because squeezing operator S(z) is

where z = r exp(iθ) is an arbitrary complex number, 0 ≤ r < ∞ and 0 ≤ 
θ ≤ 2π, r- squeezing coefficient 

For small time evolution t we have final state

task: to search possibility of Quantum Squeezing of Gluon States

by study NP evolution of initial state under V



Gluon SS production

To check whether final gluon state describes SS we should by analogy to 
quantum optics  introduce operators

and to find out that dispersion of one then is smaller than that for coherent (or 
vacuum) state

Condition of squeezing  for fotons (Walls, 1983),

for gluons (Kuvshinov,Shaporov, Marmysh, 1999) :

In terms of  a, a+:

Here as initial state vector  of nonperturbative evolution we use at the end of P 
evolution (Lupia S., Ochs W. and Wosiek J., Nucl. Phys. B 540, 405 (1999)) 
NBD distribution   is equal to superposition of  products of 

the gluon coherent states (Poissonian distributions)



Gluon SS production

➢Terms ~A3 (three-gluon self-interaction) don't give contribution to the 

squeezing condition 

Four-gluon selfinteraction is source of the squeezing effect

For example:  for colour index h=1

Here



Gluon SS production

Conditions for gluons (Kuvshinov,Shaporov, Marmysh, 1999)

❑ We have gluon phase squeezed state if:

k ≠ 1, m ≠ l

❑ We have gluon amplitude squeezed state if:

• The conditions cover all possible cases => gluon SS –exist
• The same is true for other colours

• Obviously, the larger are both the amplitudes of the initial gluon 
coherent fields with different colours and polarization indexes and 
coupling constant, the larger is the two-mode squeezing effect



Entangled States in QO

• Consider the Superposition  state vector for a system with two 
orthogonal basic states |1⟩ and|2⟩ : 

Superposition state should be didiffers from a mixed state

• As an example of an Entangled state, consider the state of a composite 
system: two-level atom-field

• After a short period of interaction, the atom and the field become 
spatially separated

• However, the state of the whole system remains Entangled: 

the State of the Аtom is strictly correlated with the State of the Field



Entangled States

• Other example of the Entangled States is two single-photon beams with different 
wave vectors

Bell in 1964 introduced these states in relation 
to the EPR paradox.

• Basis of the Bell states

• Each of these Entangled States has a remarkable property:
• If one photon is registered with definite polarization, the other
• photon immediately becomes opposite polarized
• Measurement over one particle have an instantaneous effect on
• the other, possibly located at a large distance
• Two-mode squeezed state is one of the example of the en-
• tangled states (De Wolf , 2001) 



Entangled States

• Entangled states have another paradoxical property, which was pointed 
out by Schrodinger in 1935:

Complete information about the state of the total system still does not 
provide complete information about the states of its parts.

Indeed, for example: Suppose that we are going to find out the state of a 
particle in one of the pairs two single-photon beams

Then we have to average the density matrix of the pure state

over the states of the second particle. The resulting density matrix of the 
first particle 

is apparently the density matrix of a mixed state, which is not maximally 
determinate



Gluon Entangled States

• By analogy with Index of the correlation (Dodonov 2002)

we  used as the measure of entanglement for gluon states the next coefficient: 
(Kuvshinov, Marmysh, Shaporov 2004)
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Gluon Entangled States

• Measure of entanglement is proportional to the squeezing coefficient (at 
small squeezing)

• Entanglement imposes additional restrictions on the squeezing parameter 

• In particular, for the collinear  gluons we have 

• Thus, by analogy with quantum optics as a result of four-gluon self-

• interaction we obtain two-

• mode gluon squeezed states which are also entangled
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Stability of Movement of Gauge Fields and Source 
Fields 

Classical level 
Order to Chaos transition, critical energy, Higgs mass

SU(2) Yang-Mills field system has unstable movement under any values of parameters, chaotic 
solutions of Yang-Mills (S.G. Matinyan ); G. K. Savvidy) ), possible chaos onset (Kawabe)

Higgs fields and quantum fluctuations of gauge fields induce  regularization of  dynamics of 
system of Yang-Mills, to appear of areas of stable and the regularized motion (Berman; 
Matinyan; Salashnich; Muller); Kuvshinov, Kuzmin,  Petrov).
It was shown that Higgs bosons and its vacuum quantum fluctuations regularize the system 
and lead to the emergence of order-chaos transition at some critical energy (Matinyan
Kuvshinov, Kuzmin)

Here µ is mass of Higgs boson, λ is its self interaction coupling constant, g is coupling 
constant gauge and Higgs fields
In the region of confinement there exists the point of order -chaos transition where the 
fidelity decreased exponentially and which is equal to string tension  
This connects the properties of stochastic QCD vacuum and Higgs boson mass and self 
interaction coupling constant

For SU(2) X U(1) 



Generalized Toda criterion (N- number degrees of freedom) 
(Kuvshinov,Kuzmin)

Hamiltonian:
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Generalized Toda criterion

we   have                 local instability and chaos

If there exist i, to satisfy Re 0i 

If  there exist j, to satisfy 0j  , then

In other case movement is regular and stable

In the case of two degrees jf freedom , the criterium transfer into the

known

Toda critetion (M. Toda, Phys.Lett.A vol.48 N5 (1974) p.335)



Quantum level
Fidelity

The stability of quantum motion of the particles is described by fidelity f
(Peres, Prosen, Cheng). The definition of fidelity is similar with Wilson loop
definition in QCD (Kuvshinov, Kuzmin ). Using the analogy between the
theory of gauge fields and the theory of holonomic quantum computation
(Reineke ; Kuvshinov,Kuzmin, Buividovich ) we can define the fidelity of
quark motion (the scalar product of state vectors for perturbed and
unperturbated motion) (or two density matrices) as an integral over the
closed loop, with particle traveling from point x to the point y

The final expression for the
fidelity of the particle moving
stochastic vacuum is

Thus, fidelity for colour particle moving along contour decays exponentially
with the surface spanned over the contour, the decay rate being equal to 
the string tension 
Motion becomes more and more unstable when Sỵ →∞.



❖ Sometimes fidelity is defined in another way [Hubner ], [Uhlmann],
[Kuvshinov, Bagashov ]

→

(Square root of probability of transition from the state with density matrix ω
to state with d.m. τ; ϱin to ϱout ) The fidelity decreases For two random paths in
Minkowski space, which are close to each other, the expression for the fidelity is
similar, but now the averaging is performed with respect to all random paths
which are close enough. And the final expression is

where δχ - is the deviation of the path γ2 from the path γ1, υ is the four-
dimensional velocity and lcorr is the correlation length of perturbation of the
particle path expressed in units of world line length. If unperturbed path is
parallel to the time axis in Minkowski space, the particle moves randomly
around some point in three dimensional space. The fidelity in this case decays
exponentially with time.

❖ Thus, we have connection between regions of confinement and instability of
colour particle motion



Quantum Chaos Criterion 
(Kuvshinov, Kuzmin PL 2002) 

Two-point connected Green function :
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Chaos criterion :

• Chaos: Green function exponentially (or faster) tends to zero under |x 

– y| → ∞,(x - y)2>0, (x0 – y0) > 0.

• Order: Green function oscilates and slowly decreases in this limit. 

When (dynamical localization)

Correspondence with classical chaos criterion:
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a) If classical motion is locally unstable (chaotic) then according Toda criterion there 

is real eigenvalue λi. Therefore Green function  exponentially goes to zero for 

some i when (t1 − t2) → +∞. Opposite is also true. If Green function  exponentially 

goes to zero under the condition (t1 − t2) → +∞ for some i, then there exists real 

eigenvalue of the stability matrix and thus classical motion is locally unstable.

b) If all eigenvalues of the stability matrix G are pure imaginary, that corresponds 

classically stable motion, then in the limit (t1 − t2) → +∞ Green function  oscillates 

as a sine. Opposite is also true. If for any i Green functions oscillate in the limit 

(t1−t2) → +∞ then {λi} are pure imaginary for any i and classical motion is stable 

and regular.   Proposed  criterion coincides with Toda criterion in the semi-classical 

limit (corresponding principle)



Chaos and Gauge Field Theories

➢ Classical gauge fields demonstrate chaotic behavior (Savidi, PL,1977; Kawabe, PRD,1990; 

Kuvshinov,NPCS,1999)

➢ Intermittency and chaos in multiple and branching processes of strong interactions( 

QCD) , Jets, QGP (Kittel, Dremin,…, Kuvshinov…seventies, eighties )

➢ Decoherence, Confinement of colour, instability, squeezing, entanglement,  decreasing of 

Putity, Fidelity, Information in Stochastic QCD Vacuum as environment Kuvshinov, 2003-1016…)

➢ Mathematical apparatus of gauge field theories ( namely QCD) can be used in chaos 

theory and vice versa. V. Kuvshinov, A. Kuzmin. Gauge Fields and Theory of Determenistic

Chaos (Belorussian Science, Minsk, 2006, p. 1-268 in Russian).

➢ In particular:

Instanton technique can be applied to investigate chaos assisted tunneling regime (Chaos 

assisted instanton tunneling (chaotic instanton solutions, dilute instanton gas squeezing, 

exponential widening of the ground quasi-energy zone, numerical simulations) (Kuvshinov, 

A.Kuzmin et al, PR, APP, 2003-2006)

➢ Mathematical apparatus of the gauge field theory can be applied  to investigate the 

stability of holonomic quantum computations (The influence of the classical control errors on 

holonomic quantum computations. Fidelity of HQC, Wilson loop and non-Abelian Stokes 

theorem, robust Hadamard gate for HQC)



Chaos assisted tunneling. Instanton approach

• Chaos in classical system gives acceleration (Lin, Ballentine, PRL,  1990) or 
slowing down (Grossman et al, PRL, 1991)  the process of tunneling up to several 
order of magnitude  (CAT)
Ex: (Quantum tunneling and chaos in a driven anharmonic oscillator. The Husimi
distribution (quasiprobability distribution commonly used in quantum mechanics 
to represent the phase space distribution of a quantum state such as light in the 
phase space formulation) is computed for a particle in a double-well potential 
and an oscillatory driving force. The extended phase space of the classical system 
contains two disjoint stable tubes of regular orbits, embedded in a chaotic sea 

• For the quantum system we find coherent oscillatory tunneling between these 
stability tubes, at a rate many orders of magnitude greater than the rate of 
ordinary undriven tunneling).

➢ Both phenomena are seen at experiments: C. Dembowski et al., Phys. Rev. Lett. 
84, 867 (2000),

D. A. Steck et al., Science 293, 274 (2001), W. K. Hensinger et al., Nature 412, 52 
(2001).



Approaches to chaos assisted tunneling (CAT)

• Numerical methods based on Floquet theory (Floquet theory is a branch of the 
theory of ordinary differential equations relating to the class of solutions to 
periodic linear differential equations) 

• Three-level model for chaos assisted tunneling.
❖ Path integral approach for billiard systems.
❖ Quantum mechanical amplitudes in complex configuration space. 
❖ Approach based on instanton technique
V.I. Kuvshinov, A.V. Kuzmin, R.G. Shulyakovsky, Phys.Rev.E vol. 67 (2003) 015201(R)-

4; 
V.I. Kuvshinov, A.V. Kuzmin, Progr. Theor. Phys. Suppl. No.150 (2003) pp.363-366; 
V.I. Kuvshinov, A.V. Kuzmin, R.G. Shulyakovsky, Acta Phys. Pol.B vol. 33 (2002) 

pp.1721-1728
V.I. Kuvshinov, A.V. Kuzmin, PEPAN vol.36, No.1 (2005) p.183-244 – in Russian.
V. Kuvshinov, A. Kuzmin. Gauge Fields and Theory of Determenistic Chaos 

(Belorussian Science, Minsk, 2006, p. 1-268 in Russian).
Andrea Addazi Chaotic instantons in scalar field theory arXiv:1607.08360v1 [hep-

th] 28 Jul 2016

https://en.wikipedia.org/wiki/Ordinary_differential_equations
https://en.wikipedia.org/wiki/Linear_differential_equation


Chaotic Instantons

(Kuvshinov, Kuzmin, PR, 2003)

• (The influence of chaos on properties of dilute instanton gas in quantum mechanics.is
studied. We demonstrate on the example of one-dimensional periodic potential that small 
perturbation leading to chaos squeezes instanton gas and increases the rate of instanton
tunnelling).

➢ Chaotic instanton is the solution of the Euclidean equations of motion of the perturbed
system. This configuration is responsible for the enhancement of tunneling

2 2
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1
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2 n

H p x x t nT  
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=−

= + − −

The systems with spatially periodic potential are well-studied in solid-state physics (Kittel, 1959)and 

instanton physics (Rajaraman,1982) Perturbation used in  was widely exploited in the systems exhibiting 

quantum chaos (Berman and, Zaslavsky,1982)



Dynamical tunneling amplitude with the contribution of 

the chaotic instanton solutions
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no perturbation
Wave packet after the time interval T/13.7

when the perturbation acts

Numerical simulation of dynamical tunneling properties

Small perturbation  leading to chaos can essentially enhance the 

tunnelling rate in comparison with non-perturbed system



Conclusion

❑ Interactions of quantum system with the environment can be effectively
considered in terms of density when density matrix of the system is obtained
by averaging of the joint density matrix with respect to the degrees of
freedom of environment

❑ Vacuum of quantum chromodynamics can be considered as environment for
colour particles

❑ In the case of stochastic (not coherent) QCD vacuum (only correlators of the
second order are important) in confinement region (Wilson loop decays
exponentially) we have decoherence of pure colour states into a mixed white
states with purity which decays exponentially ( decay rate =string tension)

❑ Density matrix, Purity and Fidelity for colour particles are depended on Wilson
loop averaged over QCD vacuum degrees of freedom

❑ For multiparticle states (pure separable, mixed separable and nonsepaparable
(entangled) when RT→∞ we obtain diagonalization of density matrix,
decreasing of purity and fidelity, increasing of Von Neumann entropy

❑ Possibility of Squeezed and Entangled States in QCD

❑ Instability of Movement in QCD

❑ Chaotic Instanton and Acceleration of Tunneling by E[ternal Perturbation



Some current and perspective studies
on the subject

- Interaction of ms’s, environment, apparatus -> hadronization

- Deconfinement, interaction of ms’s with quarks, hadrons and QGP as 
environment at different QGP stages

- Interactions of quarks and ms’s with stochastic vacuum in multiquarks

- Clarify connection with “pointer basis”

- Search of SS and ES

- Instability in QCD

- Applications of chaotic instantons to nuclear physics: fission and fusion 
nuclei and particles under external perturbations
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