

Exotic quarkonium in e⁺e⁻ collisions

Galina Pakhlova

The XXIV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

September 17 - 22, 2018, Dubna

Charmonium (+like) production at B factories

Any quantum numbers are possible, can be measured in angular analysis

e⁺e⁻ annihilation with ISR

 $J^{PC} = 1^{--}$

Study of charmonium(+like) final states from threshold in wide energy region γγ fusion

 $J^{PC} \!= \! 0^{\pm\scriptscriptstyle+}$, $2^{\pm\scriptscriptstyle+}$

double charmonium production

in association with J/ψ only $J^{PC} = 0^{\pm +}$ seen

e⁺e⁻ collisions at Charm factory BESIII

2016: ~3fb⁻¹ at 4.18 GeV (for D_s)

2017: 500/pb each for 7 energy points between 4.19~4.28 GeV 400/pb around chic_c1 200/pb around X(3872)

+ Initial State Radiation (ISR)

BESIII symmetric e⁺e⁻ collider scan 2.0 - 4.6 GeV; L ~ 10^{33} /cm²/s e⁺e⁻ \rightarrow J/ ψ , ψ (2S), ψ (3770), etc...

Belle citesummary 2018 Top 10

Charmonium in the standard quark model

Charmonium in the standard quark model

 $(n+1)^{(2S+1)}L_J$

- n radial quantum number
- S total spin of quarkantiquark
- L relative orbital ang. mom. $L = 0, 1, 2 \dots$ corresponds to S, P, D...
- J = S + L
- $P = (-1)^{L+1}$ parity
- $C = (-1)^{L+S}$ charge conj.

1974-1980 Discovery of 10 standard charmonium states
1980-2002 ... nothing
2002-2013 Discovery of 6 new states that can fit into charmonium table

Below open charm threshold a good agreement between theory and experiment

 $M = 3823.5 \pm 2.8 \text{ MeV} \\ \Gamma < 14 \text{ MeV} @ 90\% \text{CL}$

 $X(3823) = \psi_2(1^3D_2) \text{ PDG2018}$

 $X(3823) \rightarrow \chi_{c1} \gamma \implies C = -$

o decay to DD is forbidden due to unnatural spin-parity → small Γ
o decay to χ_{c1}γ should be prominent (E1)
o Γ(χ_{c1} γ) ~ O(10KeV) is typical for charmonium

O Both observed states decay in open charm final states like standard charmonium
 O Possible assignments are η_c(3S) and η_c(4S), but X(3940)&X(4160) PDG2018
 O The masses predicted by the potential models are ~100-250 MeV higher than observed *Theory probably needs more elaborated model to take into account charmonium coupling to charmed meson pairs*

Vector charmonium states

Direct measurements at charm factories ψ states: $J^{PC} = 1^{--}$

Model dependent results

 $\Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*.$

The interference is large & the total contribution differs from the simple sum of the Breit -Wigner resonances

 $\psi(4415)$

New measurements of $\sigma(e^+e^- \rightarrow D^{(*)+}D^{*-})$ via ISR

12

Ideal agreement with previous Belle and BaBar measurements **The accuracy is increased by a factor of two over the first Belle study**

The first angular analysis of the e⁺e[−]→D^{*+}D^{*−} process

 \circ Study of the $D^{*\pm}$ helicity angle distribution in each bin of $M(D^{*+}D^{*-})$

 \circ Decomposition of the exclusive cross section into three components :

 $\begin{array}{c} D^{*+}{}_{T}D^{*-}{}_{T} \ , D^{*+}{}_{L}D^{*-}{}_{T} \ \text{and} \ D^{*+}{}_{L}D^{*-}{}_{L} \\ \circ \ D^{*}{}_{T} \ \text{transversely polarized} \ D^{*} \ \text{meson} \\ \circ \ D^{*}{}_{L} \ \text{longitudinally polarized} \ D^{*} \ \text{meson} \end{array}$

 $\begin{array}{c} \cos_{f} vs. \cos_{p} \\ M(D^{*+}D^{*-}): \\ a) \ 4.0\text{-}4.1 GeV/c^{2} \\ b) \ 4.1\text{-}4.25 GeV/c^{2} \\ c) \ 4.25\text{-}4.6 GeV/c^{2} \\ d) > 4.6 GeV/c^{2} \end{array}$

Obtained components should allow to describe all the measured exclusive cross-sections simultaneously in the framework of the coupled channel model

JETP L 105, 3 (2017) Exclusive open-charm near-threshold cross sections in a coupled-channel approach

s, GeV

4.2

 $\mathbf{D}^*\mathbf{D}^*$

Contributions of D⁺D^{*-}, D^{*+}D^{*-}, D⁰D⁻ π^+ and D⁰D^{*-} π^+ are scaled following isospin symmetry

 $D_{s}^{(*)+}D_{s}^{(*)-}$

4.2

4.4

Charmoniumlike states

Charmoniumlike states (before PDG2018 naming scheme)

<u>Multiquark states</u>

Tetraquark

tightly bound four-quark state

Molecular state

two loosely bound charm mesons **Rescattering**

Charmonium hybrids

States with excited gluonic degrees of freedom

Hadrocharmonium

something

Specific charmonium state "coated" by excited light-hadron matter

Threshold effects

Virtual states at thresholds

Charmonium states with masses shifted by, nearby $\mathbf{D}_{(s)}^{(*)}\mathbf{D}_{(s)}^{(*)}$ thresholds

Two D-mesons, produced closely, exchange quarks

Exotic vector states

 \mathcal{B}

670 fb⁻¹

5.3

GeV/c²

 $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$

5 5.1 5.2

 $M(\Lambda_c^+ \Lambda_c^-)$

X(4630)

8.2σ

19

Unlike conventional charmonium

- No room for Y states among 1^{--} charmonium
- $3^{3}S_{1} = \psi(4040); 2^{3}D_{1} = \psi(4160); 4^{3}S_{1} = \psi(4415);$ masses of predicted $3^{3}D_{1}(4520); 5^{3}S_{1}(4760); 4^{3}D_{1}(4810)$ are higher (lower)
- \circ Absence of open charm production
- Anomalous large partial width
 - $\Gamma(Y \rightarrow J/\psi \pi \pi) > 1 \text{ MeV}$
- Only one decay channel per one Y state: light charmonium + $\pi\pi$

Y states at B factories via ISR

New precise measurements of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ cross section is inconsistent with a single pick of Y(4260) Two peaks are favored over one peak by 7.6 σ

	M, GeV/c ²	Γ, MeV	Decay mode
X(4260), PDG	4230±8	55±19	$\pi^+\pi^-{f J}/\psi$
Y(4220), BESIII	4222.0±3.1±1.4	44.1±4.3±2.0	$\pi^+\pi^-{f J}/{f \psi}$
X(4360), PDG	4341±8	102±9	$\pi^+\pi^-\psi(2S)$
Y(4360), BESIII	4320.0±10.4±7.0	$101.4^{+25.3}_{-19.7} \pm 10.2$	<u>π+π- J/ψ</u>

New precise measurements of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$, $\pi^+\pi^-h_c$

BESIII confirms lineshape in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

	M, GeV/c2	Γ, MeV	Decay mode
Y(4220)	4209.5±7.4±1.4	80.1±24.6±2.9	$\pi^+\pi^-\psi(2S)$
Y(4220)	4218.4 ^{+5.5} -4.5±0.9	$66.0^{+12.3}$ -8.3 ± 0.4	$\pi^+\pi^-h_c$
Y(4390)	4383.8±4.2±0.8	84.2±12.5±2.1	$\pi^+\pi^-\psi(2S)$
Y(4390)	4391.5 ^{+6.3} _{-6.8} ±0.9	$139.5^{+16.2}_{-20.6} \pm 0.6$	$\pi^+\pi^-h_c$
<u>X(4360), PDG</u>	<u>4341±8</u>	<u>102±9</u>	$\underline{\pi^+\pi^-\psi(2S)}$

 $e^+e^- \rightarrow \pi^0 \pi^0 \psi(2S)$

First measurements of $\psi(4415) \rightarrow \chi_{cJ}\omega$ mass, width, Γ_{ee} for $\psi(4415)$ are fixed to PDG parameters

BESIII: $e^+e^- \rightarrow D^0D^{*-}\pi^+$	Belle: $e^+e^- \rightarrow D^0 \underline{D^{*-}\pi^+}$
	Image: PRD 80, 091101 (2009)
	$\psi(4415)$
y(4220) y ⁴⁰⁰ Y(4390) Y(4390)	$\mathbf{Y(4390)}$
	$\begin{array}{c} \text{or} \\ \psi(4415)? \end{array}^{0} \xrightarrow{\mu_{+}} \psi(4415) \rightarrow D^{0}D_{2}(2460)^{0} \rightarrow D^{0}D^{*-}\pi^{+} \end{array}$
0^{-1}	4 4.2 4.4 4.6 4.8 5 5.2 $M(D^0D^*\pi^+)$ GeV/c^2
Parameters SolutionI SolutionII SolutionIV	Belle: $e^+e^- \rightarrow D^0 \underline{D^-\pi^+}$
$c (10^{-4})$ 5.5±0.6 $M_1 (\text{MeV}/c^2)$ Y(4220) 4224.8±5.6 $M_1 (MeV/c^2)$ Y(4220) 4224.8±5.6	PRL100 062001(2008)
$M_2 (\text{MeV}/c^2)$ Y(4390) 4400.1±9.3	$\frac{30}{2}$ $\frac{10}{2}$ $\frac{100}{2}$ $\frac{100}{2}$
$\Gamma_{2} (MeV) = 181.7 \pm 16.9$ $\Gamma_{1}^{el} (eV) = 62.9 \pm 11.5 7.2 \pm 1.8 81.6 \pm 15.9 9.3 \pm 2.7$ $\Gamma_{1}^{el} (eV) = 62.9 \pm 11.5 7.2 \pm 1.8 81.6 \pm 15.9 9.3 \pm 2.7$	$\frac{20}{10}$ ~10 σ / $\frac{1}{10}$ + + +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{0}{30} \qquad \qquad$
ϕ_2 1.9±0.3 2.3±0.2 2.3±0.1 -1.9±0.1	$M = 4411 \pm 7 \text{ M} \Rightarrow B$ $F_{-} = 77 \pm 20 \text{ M} \Rightarrow B$
$\psi(4415) \rightarrow D^0 D_2(2460)^0 \rightarrow D^0 D^- \pi^+$ $\psi(4415) \rightarrow D^0 D_2(2460)^0 \rightarrow D^0 D^{*-} \pi^+$	$\sum_{0} = \frac{1}{0} = \frac{1}{1} = \frac{1}{1$
$\psi(4415) \rightarrow D^{\circ}D_{2}(2400)^{\circ} \rightarrow D^{\circ}D^{\circ}\pi^{+}$ UL due to limited sta	atistics 4 4.2 4.4 4.6 4.8 5 $M(D^0 D^{-} \pi^{+}), GeV/c^2$

Vector states summary 2018

	Open charm	$J/\psi\pi^+\pi^-$	$\psi(2S) \pi^+\pi^-$	$h_c \pi^+ \pi^-$	J/ψη	$\chi_{c0}\omega$	$\chi_{c2}\omega$	
ψ(3770)	ok							
ψ(4040)	ok				ok			
ψ(4160)	ok				ok			
$\frac{Y(4220)}{Y(4260)} = \psi(4230) \text{ PDG 2018}}{Y(4260)} = \psi(4260) \text{ PDG 2018}}$	DD [*] π none	ok ok		ok		ok		Same state?
$\frac{Y(4390)}{Y(4360)} = \psi(4390) \text{ PDG 2018}}{Y(4360)} = \psi(4360) \text{ PDG 2018}}$	none	ok	ok ok	ok				Same state?
Y(4390)	$\mathrm{DD}^*\pi$							ψ(4415)?
ψ(4415)	DDπ						ok	
$Y(4630) = \psi(4660)$ PDG 2018	$\Lambda_{c}^{+}\Lambda_{c}^{-}$							Same state
$Y(4660) = \psi(4660)$ PDG 2018	none	ok	ok					ψ(4660)?

- Two newborns in Y family: Y(4220), Y(4390)
- Only one Few decay channels per one Y state
 - hadrocharmonium is excluded!
- Nature of Y states?
- **PDG revolution 2018**

Y states with $J^{PC} = 1^{--}$ turn into ψ states

X(3872) as $\chi_{c1}(3872)$ in PDG2018

Search for X(3872) partners decays Molecules with $J^{PC} = 0^{++}, 1^{+-}, 2^{++}$					
$\chi_{c1} \gamma$ $\chi_{c2} \gamma$	Forbidden by C-parity conservation C-odd partners: tetraquark, molecule UL : < 1/4 from J/ $\psi \pi^+\pi^-$				
J/ψ η	C-odd partners: tetraquark UL : $< 1/2$ from J/ $\psi \pi^+\pi^-$				
η _c η η _c π ⁰ η _c π⁺π⁻ η _c ω	Search for other X-like molecular states UL : $\sim J/\psi \pi^+\pi$				

X(3872) interpretation

D⁰**D**^{*0} molecular state: (the most popular)

- $\circ \quad M_X \sim M_{D^0} + M_{D^{*0}} \text{ is not accidental}$
- $\circ \quad \mathbf{J}^{\text{PC}} = \mathbf{1}^{++} \left(\mathbf{D}^0 \mathbf{D}^{*0} \text{ in S-wave} \right)$
- \circ **DD**^{*} decay
- $\circ~$ Small rate for decay into $J/\psi\gamma$ is expected
- $\circ \quad \text{too large } X(3872) \rightarrow \psi(2S) \gamma$
- too small binding energy: D^0 and D^{*0} too far in space to be produced in high energy pp collisions

Mixture of P-wave charmonium $\chi_{c1}(2P)$ and S-wave DD^{*0} molecule

Charged charmoniumlike states

 $\odot_{\circ} \odot$

Z_c

••

••

 \mathbf{O}

- F

••

k.

00

•)•

.

00

00

 \mathbf{O}

• 1.

90

00

• •

00

Charged Z_c^+ states in B decays

$Z(4430)^+ \rightarrow \psi(2S) \pi^+$

LHCb: Parameters (including quantum numbers) are consistent with the Belle results

Another peak at **4240 MeV** with significance $\sim 5 \sigma$

Belle: $Z(4430)^+$ three different analysis, $J^P = 1^+$ o Discovery: fit to $M(\psi(2S)\pi^+)$ with $K^*(890)\&K^*(1430)$ veto

- o Dalitz analysis
- Full amplitude analysis to obtain spin-parity Mass values are the same, width depends on method

Four Z_c⁺ states found by Belle

	PDG2018	M(MeV)	Γ(MeV)	JPC	decay mode	production mode	experiment
Z ⁺ (4050)	X(4050)	4051^{+24}_{-40}	82^{+50}_{-28}	?	$\chi_{c1}\pi$	$B \rightarrow KZ^+$	Belle
Z ⁺ (4250)	X(4250)	4248^{+190}_{-50}	177^{+320}_{-70}	?	$\chi_{c1}\pi$	$B \rightarrow KZ^+$	Belle
Z ⁺ (4200)	$Z_{c}^{+}(4200)$	$4196^{+31}_{-29}^{+17}_{-13}$	370^{+100}_{-150}	1+	J /ψπ	$B \rightarrow KZ^+$	Belle/LHCb
Z ⁺ (4430)	$Z_{c}^{+}(4430)$	4478 ⁺¹⁵ -18	181±31	1+	$\psi(2S)\pi, J/\psi\pi$	$B \rightarrow KZ^+$	Belle/LHCb

Z_c⁺ cannot be conventional charmonium

$\mathbf{Z}_{\mathbf{c}}$ family in $\mathbf{e}^+\mathbf{e}^-$ annihilation

Z_c summary

State	Mass (MeV/c ²)	Width (MeV)	Decay	Process
Z _c (3900) [±]	3899.0±3.6±4.9	$46 \pm 10 \pm 20$	$\pi^{\pm}J/\psi$	$e^+e^- \to \pi^+\pi^- J/\psi$
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- \to \pi^0\pi^0 J/\psi$
	3883.9 \pm 1.5 \pm 4.2 Single D tag	$24.8 \pm 3.3 \pm 11.0$ Single D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- \to (D\overline{D}^*)^\pm \pi^\mp$
Z _c (3885)±	3881.7 \pm 1.6 \pm 2.1 Double D tag	$26.6 \pm 2.0 \pm 2.3$ Double D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- \to (D\overline{D}^*)^\pm \pi^\mp$
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- \rightarrow (D\overline{D}^*)^0\pi^0$
Z _c (4020) [±]	4022.9±0.8±2.7	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_c$	$e^+e^- ightarrow \pi^+\pi^-h_c$
Z _c (4020) ⁰	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 h_c$	$e^+e^- \to \pi^0\pi^0 h_c$
Z _c (4025)±	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^\pm \pi^\mp$
Z _c (4025) ⁰	4025.5 ^{+2,0} _{-4.7} ±3.1	$23.0\pm6.0\pm1.0$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^0\pi^0$

- Same states with different final states
- \odot Two isospin triplets: $Z_c(3900)^{\pm/0}$ and $Z_c(4200)^{\pm/0}$
- Amplitude analysis on $Z_c(3900)$: $J^P=1^+$
- \circ Interpretation? Molecular states? $Z_c(4050)^+ = Z_c(4030)^+$?

Standard or/and Ī **Exotic**

The same decay mode
Similar masses and widths
Different production mechanisms
Found by Belle & confirmed by BaBar

 $X(3915) \equiv Y(3940)$

Theory

• $\chi_{c0}(2P)$ production in two body B decays is suppressed

 \circ χ_{c0}(2P) → DD should be dominant

Better $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi DD$

Nature of X(3915) is the open question... again

Bottomonium

塚森

 $\overline{\mathbf{\cdot}}$

D

 $\overline{\mathbf{\cdot}}$

 \odot

-

1120

mil

0

6

Bottomonium in standard quark model

 $n^{(2S+1)}$

 $\begin{array}{l} n \ \ radial \ quantum \ number \\ S \ total \ spin \ of \ q-antiq \\ L \ relative \ orbital \ ang. \ mom. \\ L=0,1,2 \ ... \ correspond \ to \ S,P,D \\ J=S+L \\ P=(-1)^{L+1} \ parity \\ C=(-1)^{L+S} \ \ charge \ conj. \end{array}$

The heaviest quarkonium provide a unique non-relativistic system for QCD testing

Observation of $h_b(1P,2P)$

Observation of $h_b(1P,2P) \rightarrow \eta_b(1S) \gamma$

Charged bottomoniumlike states

Observation of large $e^+e^- \rightarrow \Upsilon(nS) \pi^+\pi^- near \Upsilon(10860)$

Partial widths for $\Upsilon(10860) \rightarrow \Upsilon(nS) \pi^+ \pi^$ more than **two orders of magnitude larger** than corresponding partial widths for $\Upsilon(4S), \Upsilon(3S)$ or $\Upsilon(2S)$ decays

 $\Gamma(\Upsilon(\mathbf{nS}) \pi^+ \pi^-)$

$0.59 \pm 0.04 \pm 0.09$
$0.85 \pm 0.07 \pm 0.16$
$0.52^{+0.20}_{-0.17} \pm 0.10$
0.0060
0.0009

Possible explanations

 $\circ \Upsilon(10860)$ has exotic properties

 \circ Reactions in fact proceed via Y_b states similar to exotic vector charmonium

To be done

- Study of resonant structure of $\Upsilon(5S) \rightarrow (bb)\pi^+\pi^-$
- Measure energy dependence of $e^+e^- \rightarrow \Upsilon(nS) \pi^+\pi^-$

Summary of Z_b parameters

h_b production mechanism:

 $\Upsilon(5S) \rightarrow h_b(1,2P) \pi^+\pi^-$ are not suppressed due to Z_b intermediate states!

Resonant structure of $\Upsilon(5S) \rightarrow BB^{(*)}\pi$

Channel	Fractic	Fraction, %					
	$Z_b(10610)$	$Z_b(10650)$					
$\Upsilon(1S)\pi^+$	$0.60 \pm 0.17 \pm 0.07$	$0.17 \pm 0.06 \pm 0.02$					
$\Upsilon(2S)\pi^+$	$4.05 \pm 0.81 \pm 0.58$	$1.38 \pm 0.45 \pm 0.21$					
$\Upsilon(3S)\pi^+$	$2.40 \pm 0.58 \pm 0.36$	$1.62 \pm 0.50 \pm 0.24$					
$h_b(1\mathrm{P})\pi^+$	$4.26 \pm 1.28 \pm 1.10$	$9.23 \pm 2.88 \pm 2.28$					
$h_b(2\mathrm{P})\pi^+$	$6.08 \pm 2.15 \pm 1.63$	$17.0 \pm 3.74 \pm 4.1$					
$B^+\bar{B}^{*0}+\bar{B}^0$	B^{*+} 82.6 ± 2.9 ± 2.3	-					
$B^{*+}\bar{B}^{*0}$	—	$70.6 \pm 4.9 \pm 4.4$					
PRL108,122001(2012)		$- \pm 2.6 \pm 2.1 \text{ MeV}$					
PRL116,212001(2016)	$\frac{M_{Zb(10610)} - (W_B + W_{B*})}{M_{Zb(10650)} - 2M_{B*}}$	$= +1.8 \pm 1.7 \text{ MeV}$					
PRI 117 142001(2016)							

Phase space of $Y(5S) \rightarrow B^{(*)}B^*$ is tiny Relative motion $B^{(*)}B^*$ is small $Z_b(10610) \rightarrow BB^*$ dominantly $Z_b(10650) \rightarrow B^*B^*$ dominantly

Favorable to the formation of the molecular states

J^P = 1⁺ : B^(*)**B**^{*} in S-wave

 $Z_b(10610) = | BB^* \rangle$ $Z_b(10650) = | B^*B^* \rangle$

Energy scans: search for Y_b states

Belle & BaBar are in a good agreement

Bottomonium cross sections

No evidence for new Y_b states yet

KEKB upgrade SuperKEKB(nano-beam)

7×4 GeV				
	Parameter	KEKB Design	KEKB Achieved	SuperKEKB Design
	Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	(4.0/7.0)
~1 km in diameter	β_{v}^{*} (mm)	10/10	5.9/5.9	0.27/0.30
	β_x^* (mm)	330/330	1200/1200	32/25
	\mathcal{E}_{x} (nm)	18/18	18/24	3.2/5.3
	$\frac{\varepsilon_y}{\varepsilon_x}$ (%)	1	0.85/0.64	0.27/0.24
	$\sigma_{y}(\mu m)$	1.9	0.94	0.048/0.062
"nano-beam"	ξv	0.052	0.129/0.090	0.09/0.081
	σ_z (mm)	4	6/7	6/5
	I_{beam} (A)	2.6/1.1	1.64/1.19	x2 3.6/2.6
KEKB SuperKEKB	Nbunches	5000	1584	2500
	Luminosity $(10^{34} cm^{-2} s^{-1})$	1.0	2.11	80

SuperKEKB built in of KEKB tunnel is almost entirely new machine

 $\circ \times 20$ smaller beam focus at interaction region

Mt. Tsukuba

 \circ twice higher beam current

Super

KEKE

SuperKEKB

• × 40 higher Luminosity

First beam in 2016, first collision in April 2018

Belle II is an upgrade of the Belle detector:

capable to work at much higher background environment

Highlights:

Vertex:2 layers of pixels, 4 layers of DS Si strips with• Better trackingextended coverage• Better vertexingDrift chamber:smaller cell size + longer lever arm• Better particle identificationPID:new TOP + ARICH• Better calorimeter resolution

Super Charm Tau Factory at BINP in Novosibirsk

The concept of the new collider is based on a new method to increase the luminosity, which was proposed by physicists from INFN (Italy) and developed by INFN and BINP experts

Detailed physics program is developed

- Preliminary CDR was issued (in 2011) and updated in 2018
- R&D for accelerator and detector is in progress, prototypes and key elements were designed and produced
- Preliminary civil engineering and infrastructure design is completed
- IT requirements are identified

Talk of P.V.Logachev, Director BINP at "Super c-tau factory workshop", May 26-27 2018, Novosibirsk

To be done at Super-B & Super c-τ Factories

Huge luminosity and significantly improved detector parameters (better tracking, vertexing, particle identification, resolution) should allow to perform a lot of new measurements and studies inaccessible to previous experiments because of lack of statistics

Detailed physics programs are developed. They include:

 \circ Search for and precise measurements of all predicted quarkonium states above open charm (bottom) threshold

 \circ Energy scan in 3.7-5.0 GeV energy region at Super c-τ Factory. Precise measurements of σ (e⁺e[−]→hadrons), including exclusive cross-sections to open charm final states

 Search for new and precise study of known quarkoiniumlike states including angular & Dalitz & amplitude analyses

In conclusion

- Dozens of quarkonium states and quarkoniumlike states named as XYZ states were discovered since 2002 by Belle & BaBar & BES experiments and this list continues to grow
 - Particle Data Group 2018: instead of XYZ states new naming scheme of hadrons <u>M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D 98, 030001 (2018).</u>
- Charmonium & Bottomonium tables below open charm & bottom thresholds are (almost) completed. <u>Good agreement between theory and experiment!</u>
- <u>Above open charm & bottom thresholds quarkonium physics is in deep crises!</u>
 Observed states remain puzzling and can not be explained for many years!

BUT....

- The mysterious behavior of exotic states motivates us to create new experiments and theoretical models
- Super-B and Super-charm-tau factories have to shed light on unknown nature of quarkoniumlike states