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Interpolation formula for
Troyan’s dibaryons, ΔM=1 MeV

n=1, 2, 3, 4 … ?
Although not all n  
are met in the  
Yu.A. Troyan data  
(I included them)

ΔM= 0 MeV A.M. Baldin et al., 1979
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Baldin group experiment (BGE):
Сообщение ОИЯИ 1-12397, 1979, АМ Балдин, ВК  
Бондарев, АН Манятовский, НС Мороз, ЮА Панебратцев,

АА Повторейко, СВ Рихвицкий, ВС Ставинский, АН Хренов

Excited state of  
deuteron was  
predicted already  
in 1979!

Calculations by B.F.K.
and Jan Pribish,
Baldin ISHEPP XXII, 2014
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Two peaks from BGE, which  
were not analyzed before

?
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Levels of a quantum oscillator?

Total correspondence  
Between Troyan’s
and Baldin’s group  
data!
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See details in B.F.K.,J. Pribish,  
Baldin ISHEPP XXII, 2014
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Suggestions prompted by Troyan
and Baldin group experiments (TE
and BGE, accordingly)

1. Indications of existence of equidistant quantum oscillator
levels in compressed two-nucleon systems with level
separation ħω≈10 MeV were obtained.

2. Energy of the ground state of the oscillator is equal to 
ħω/2 + ħω/2, which means that it is consist of one  degree 
of freedom oscillating in (x-y)-space, or it  consists of two 
independet one-dimensional oscillators.

Remark:

The ground state was observed as dibaryon with mass =  
1.886±0.001 GeV/c2 by Yu.A. Troyan and may be also  
extracted from the paper of A.M. Baldin et al. as particle  
X in the processes: X+d Y+d, d+X d+d, d+X X+d,  
X+X X+d, X+X Y+d.
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Experiment at BNL with EVA  
spectrometer

A. Tang et al Phys. Rev. Lett. 90, 042301 (2003)

Z (along beam in lab)

J. Aclander et al Phys. Lett. B 453, 211 (1999)

X (up) 

Model of Quasifree
Knockout (MQK): IP is
knocked out by AP, neutron  
is a freely outgoing particle.

Experimentally observed  
mean values and fluctuations  
of Pz

cm and Pz
rel can be  

explained by the Fermi  
motion in C12.

MQK and SRC agrees with
the experiment for Pz

cm and
Pz

rel .

C12

Accelerated proton (AP)

Intranuclear proton (IP)

p1

p2

p0

pf

Intranuclear neutron

pn

Scattered IP
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Pz
cm and Pz

rel in MQKCalculation of  
framework

In framework of the Model of Quasifree Knockout

P cm and P rel may be found as follows*):

P cm = Pf + Pn ,

P rel =Pf – Pn ,

where Pf is supposed momentum of the  
intranuclear proton, IP, before its interaction with  
the accelerated proton, AP,

Pf = P1 + P2 - P0

and Pi being momenta of the secondary protons,  

i=1,2.

*)A. Tang et al Phys. Rev. Lett. 90, 042301 (2003)

9



Results of our kinematic analysis

We confirm the results of EVA kinematic analysis for the 
longitudinal projection of momenta (in z-direction in the picture). 
We found a disagreement of the Model of Quasifree Knockout 
with the experiment for Px

cm and Px
rel (in vertical direction)*).

Compare:

‹Pz
cm›≈0, σz

cm≈ 0.1, ‹Pz
rel›≈0.3, σz

rel≈0.1,

‹Px ›≈0, σx ≈0.6, ‹Px ›≈0.6, σx ≈0.2,
cm cm rel rel

hereafter all values are in GeV/c.

*)B. Kostenko, J. Pribiš, V. Filinova, PoS (Baldin ISHEPP XXI) 105
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Can interaction between intranuclear  
p and n explain the difference?

Pf -ΔP0 +ΔPf =P2

P0+ΔP0=P1 
Scattered proton

Scattered intranuclear proton

P0 Accelerated proton

Scattered neutron

Pn-ΔPf = P'n

This leads to new values: P'f = P1 + P2 - P0= Pf+ ΔPf

P’ rel =P'f – P'n = Pf - Pn+2ΔPf – different!  

P' cm = P'f + P'n = Pf + Pn= P cm– the same!

Why fluctuations of P‘x 
cm and Pz

cm are so different?!
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Uncertainty relation ΔE·Δt~ħ

More exact relation for P’ cm is

P’ cm =P'f + P'n = (Pf + δ1+ΔPf) +(Pn + δ2 -ΔPf).

Here δ1 and δ2 are the quantum uncertainties of the momenta of  

particles f and n (information about this state is not accessible  

directly to the external observer). Therefore, estimation of x-
component of momentum of the particles implies usage of the 
energy conservation law*). This leads inevitably to uncontrollable  

change of particle’s velocity*), Δvx~ħ/(ΔPx Δt), where Δt  
is a duration of the interaction between the quasiclassical object  

(projectile deuteron here) and the particle, ΔPx is a precision of

the xmomentum measurement, ΔPx ≈ σ rel. Taking into account that

Δvx≈σx
cm/m, m≈2 GeV/c2, we obtain a rather realistic value

Δt≈ 10-23 s.
*)  L.D. Landau, E.M. Lifshits, Quantum Mechanics,1974 § 44.
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An explanation of the BGE results,  
which follows from the EVA data

Due to the relation ΔE· Δt~ħ, the uncertainty of  
the target deutron energy during the interaction  
time Δt≈10-23 sec is 66 MeV, and of the projectile  
deutron, due to relativistic effect of the time  
dilation, is ~320 MeV. This means that the initial  
states of the target deuteron may be the first 6  
oscillator levels (including the ground state). The  
projectile deuteron may be approximately at the
first 32 its oscillator levels. This is in a good

2 oscillator levels (including the ground state) in
the reactions with the excited target deuteron.
The projectile deuteron were registered up to 31
excited state due to the relativistic effect of time
dilation.
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d+X→d+d,
X+X→Y+d.

Reactions

Y+X→Z+d were agreement with the observed contribution of only

X+d →Y+d

not considered

projectile

ħω≈10 MeV

target



EVA: Why the effect of measurement  
of Pcm is not seen for z-direction?

Answer. The scattering takes place in the  
transverse plane and the longitudinal  

components of momentum are not  
influenced by the interaction. They are the  
same as before interaction. In the EVA  
experiment, we measure only the transverse  
component of Pf + Pn. Compare this with a  

remark concerning necessity to measure each 
component of particle’s momentum 

independently in the gedanken experiment  
described in the Landau and Lifshits book, § 44.
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EVA: Why the effect of measurement  
is not seen for P’ rel ?

Answer
The exact expression for P’ rel is
P’ rel  =P'f  - P'n = (Pf + δ1+ΔPf) - (Pn +δ2 -ΔPf)==(Pf - Pn) + 2ΔPf,
where ΔPf is the momentum transfer from n to p. In this case,  
the quantum uncertainties of proton and neutron momenta in  
an intermediate state (which are unobserved directly)

are taken with different signs, |δ1x- δ2x|=0.2 < |δ1x+ δ2x|=0.6,  

and almost compensate each other.

Important note: Kinematics of experiment selects events in which

‹P rel›=l(P - P ) l <x f n x z f n z‹P rel›=l(P - P )  l  due to the preferable choice of

the intranuclear proton rapidly running away from the incident  

particle (because of cross-section dependense on √s) . The neutron  

in SRC pair is usually suggested to move in the opposite direction  

with a speed comparable  to proton one.
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EVA: Strange “p-n scattering”
in the transversal plane

We see thatLet us compare ‹P’z ›≈0.3 and ‹P’x ›≈0.6.
rel rel

‹P’x › > ‹P’z ›.
rel rel

This may be only due to a difference in a x- and z-components  
of 2ΔPf, where ΔPf is a momentum transfer between  
intranuclear n and p (see the previous slide). Most likely  
estimation is 2ΔPfz ≈ 0 and 2ΔPfx > 0.3. In other words, the  
whole momentum transfer lies in the transversal plane!  
This is very strange because the p-n scattering itself was  
initiated before by the projectile particle–p collision along z-
direction. This means that p was incoming on n also along the  
transversal plane. Thus, for any usual p-n scattering we should  
expect something diametrically opposite: ΔPfx≈0, ΔPfz≠0 (see
picture in the next slide for visualization).
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Assumption prompted by  
the EVA experiment

The EVA experiment gives an evidence for a possibility of  
inner excitations of quarks degrees of freedom of the p-n  
lump (комок) in the transversal plane after its collision  
with a projectile.

The proton and neutron in the lump after their scattering on each other  
do not acquire a visible longitudinal relative momentum (see EVA data  
for Pz

rel which is in a good agreement with the intranuclear Fermi motion,
PF=0.22). This means that momentum of the excitation in the lump is comp-
letely localized in the transversal plane. This coincides with the suggestion  
of the two-dimensional oscillator excitations following from TE and BGE.

This process cannot be interpreted as p-n scattering: 
compare with the usual p-n scattering shown in the  
picture, where we expect Pz

rel =0 before scattering and  
Pz

rel ≠0 after it.

z

scattering

before after
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Coherent state of 1-D harmonic  
oscillator

x

V(x)= m ω2x2/2

E. Schrödinger, 1926

d2‹x(t)›/dt2+ ω2‹x(t)›=0
-classical equation of motion  
for the mean position of
a particle in the oscillator  
ponential,

Δx(t)Δp(t)=ħ/2

-the minimally possible  
uncertainties of position and  
momentum of the particle,

wn=e-‹n›‹n›n/n!

- - the Poisson distribution
to find the particle with energy

En= ħω (n+1/2)
in a superposition of states

with different energies.

Moving wave  
packet of a particle
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Parameters of our 2-D oscillator

Effective mass of oscillating quark

meff=mq (md - mq)/md=0.276 GeV/c2.  

Kinetic energy of transversal motion

eff
m2T = + 0.62 −m = 0.385

eff

Localization of the packet in momentum and usual spaces

Δpx~Δpy~0.053, Δx~Δy~1.88 fm< rd =2.13 fm

(may be estimated using ħω/2 ≈ 0.005).
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Coherent states of 2-D  
harmonic oscillator. Case 1.

For 2-D case the coherent state is a superposition  
of different levels of two oscillators:

2 2

1  2 . Probability to findIn the general case  

dibaryon with mass is given by

2

1 2

1 2 .

2n1 2n2

n !n !

 w = exp(− 2 
− 

n 1

2
) 

n1+n2=n

Mn = M0 + 0.01 n

1

1 2

2 1 2
2 1 2

1 2

) /2)
n n2

n1,n2 .
n !n !

 

n ,n =0

1, = exp( (  −  2 
+ 




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Case 1 corresponds to Lz=0

Lissajous figures in classical physics:
two periodic motions with equal frequences  
give a periodical circular motion.
It is not the case here. In the coordinate
representation we have two independent 1-D oscillators:

x

Explanation: δφ δN ≈ 1 (Dirac). In state
numbers of particles (excitations) in x- and y-oscillators
are known exactly:
that relative phase between x- and y-oscillations is totally  
undefined and no circular motion arises.

1 2 n2 2
q ,q n1,n2 = n (q1)

1
n n n(q ),  (q) =C H (q / )exp(−q2 / )

1,2

2
. This implies

x 1 y 2
N = 

2
, N = 

Lz  0

z

y
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Case2 : States with Lz≠0.  
Translation from linear into circular  
polarization language

, in terms of creation and annihilation operator

describing x- and y-oscillator excitations, is
Let’s introduce operators describing excitations

are now They are eigenvectors of

2. Corresponding basis vectors
with negative and positive helicities:

a+ = (a1 +ia2 ) / 2, a− = (a1 − ia2) /

n1 !n2!

a†n+a†n−

n+ ,n− = + −    0,0 .

The state n1,n2

1 2 − − + +
− p q = a†a

operator L3   = q1p2 − a a and describe the oscillator
†

a†n1a†n2

n1,n2 0,0 .
n1 !n2!

= 1 2

Wave functions can be found by solving the
Schrödinger equation in the cylindrical coordinates.

†

+ + − −
Hamiltonian in the similar way asa1 anda2:H = (a a + a†a +1)

r,m = −n+ + n− n+,n−
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Two-quark excitations

The state 1,2 has another natural interpretation
1 and 2 are numbers of constituent quarks in  
colliding nucleons. This state has also zero orbital  
momentum and energy of the ground state = ħω.

It is possible to construct a coherent state describing orbital
excitations of two quarks simply replacing subscripts 1 by+

. Explicitly*):

1 2

2 2
.

 n+ n−
+ − n+ ,n−

n+ ,n−=0 n+ !n−!
+ ,− = exp(−(+ + − ) / 2) 

In this case dibaryon with mass Mn = M0 + 0.01 (n++ n− ) is a
coherent superposition of states with different inner angular

momentum, Lz = m = n− − n+.

and 2 by − in the previous formula for 1,2
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Generalized coherent state*):

mass

3 5
 m

 (m + 2k) 
1/2

= (1−  k, k +m , k =1, , 2, ,
m=0  m!(2k)  2 2

2 
)k 

*) Compare with definition of the usual coherent states: = exp(−  2 
/ 2) exp(a† ) 0

k
 = (1−  2

)k exp( K † ) 0 =

Here k describes energy of the ground state of the oscillator (may be different):

H k,k +m  2 K0 k,k +m = 2 (k +m) k, k +m  E0 = 2 k.

2N
M + 2 (k +m)
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Generalized coherent excitations
A.Perelomov, Generalized Coherent States and Their Applications, Springer,  
1986

K = a a , K †  = a†a† , K = (a†a + a†a +1) / 2
1 2 1 2 0 1 1 2 2

(It is possible to describe orbital excitations too changing subscripts 1→ +, 2→− )

K0 , K = −K , K0 , K  = K , K , K  = 2K0  su(1,1) algebra
† † †

2m − Probability to observe a dibaryon with
m

2 
)2k (m + 2k)

w = (1− 
m!(2k)



Generalized coherent excitations  
of two independent oscillators
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Production of the coherent  
dibaryons (CD) in N-N collisions

Analogy with ion vibrations in molecules:

At high excitation energy, a potential  
of interaction between nuclei changes  
abruptly due to rearrangement of the  
electron cloud surrounding them.
The potential of interaction may be  
approximated by parabola of the  
second order near its minimum.
This leads to formation of the  
harmonic oscillator vibration levels 
of the molecular constituents (ions).
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Production of CD: a model of  
the first-order phase transition

Analogy: molecule 6q system, nuclei constituent quarks,  
potential boson field which quarks can emit and absorb.

† †

1 1 2 2
H = a a + a a +1 →

( ) ( )† †

1 2 1 1 2 2 1 1 1 1 2 2 2 2 1 2

†  †  2H ( , ) = a a + a a +1−  a + a −  a + a + 
2 
+

 
Here the first two additional terms describe interaction between the oscillators  

and the boson fields of amplitudes1 and 2 , the last two are energy of the  
boson fields created during N-N interaction. We may rewrite the Hamiltonian  
in an equivalent form

† †

1 2 1 1 1 1 2 2 2 2
H ( , ) = (a −  ) (a −  ) + (a − ) (a − ) +1 .

Thus we obtain the usual harmonic oscillator Hamiltonian with replacement

† †

i i i i i i
a → (a − ) ,a → (a − ).
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A model of the first-order phase  
transition (continuation)

These new creation and annihilation operators obey the same commutation
are complex numbers). Furthermore,

eigenstates of the new Hamiltonian may be expressed through eigenstates of  
the old one (the Stone-von Neumann theorem for Heisenberg-Weyl’s group).
One may define the ground state of the new Hamiltonian in exactly
the same way as it was done before. Namely, we should change the relation

by

It may be checked that the solution of this equation is as follows

relations as usual ones (becausei

a1a2 0,0 = 0

(a1 −1)(a2 −2 ) 0,0 
new 

= 0.

1

1 2

2 2 1 2

new

1 2

n n2

n1,n2 ,
n !n !

 

n ,n =0

0,0 = 1,2 = exp(−(1 + 2 ) / 2)

which is the 2-D Glauber coherent state described before.

28



Production of CD: a model of  
quantum mechanical evolution

Hamiltonian taking into account interaction of the quark oscillator with  

an inner boson field ξ produced in N-N interaction:

0 0 int
H = 2 K + i(K † − *K ) = H + H .

Evolution operator in the interaction representation is
† * †

int 0
 K )exp(K )exp(K ),U (0,t) = exp(−iH t) = exp( tK −   tK )  exp(

where , and are some known functions oft . In particular*),

 = tanh(t),  = ln cosh t = − ln(1−  2
).

k
Using K 0 = 0, it is easy to find

which is the generalized coherent state described above.

*) See A.Perelomov, Generalized Coherent States and Their Applications.

k k
U (0, t ) 0 = (1 −  2

) k exp( K † ) 0  
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Conclusion

1.In the Troyan and Baldin group experiments, there are encouraging  
evidences for registration of quark oscillator levels excitations in the  
compressed 2-nucleon systems.

2. Data of EVA experiment give a transparent hint about possibility of
dibaryon formation in proton-SRC scattering. They are also
in agreement with Landau-Peierls energy-time uncertainty relation.

3.  Estimation of time of quantum measurementof Px , Δt≈2 10-23 s,cm

is in a good correspondence with the Baldin group’s data on d-d
interactions.

4. Further measurement of EVA type may shed light on possibility of two
types of phase transitions 2N 6q, which are connected with  
creation of different bosonic fields inside the system. Corresponding  
information may be contained in distribution on the coherent dibaryon
masses.
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