
A lightweight library prototype for Monte-Carlo
simulation of relativistic nucleus-nucleus collisions

based on pipeline architecture

S. Savenkov 1,2

A. Novikov 1,3

K. Vasyagina 1

A. Svetlichnyi 1,2

1 – Moscow Institute of Physics and Technology
2 – Institute for Nuclear Research of the Russian Academy of Sciences
3 – Yandex

Outline
● Similarities between nuclear collision modelling and data pipeline architecture.

● Design of a C++ library for code organization:

○ modules

○ abstract factory

○ build system and integration.

● Examples of the library usage.

Nucleus-Nucleus collision modelling

● There are a lot of different models and even more implementations: QMD, Glauber model
species, PHSD, QGSM, SMM, fragmentation models, plenty of afterburners, etc.

● We need to include several models to describe different physics, however trying to describe
everything proves to be too performance demanding.

● Despite similarities between their input and output, combining them requires additional
converter scripts or some advanced interoperability and requires a lot of effort.

● Significant amount of modern codes is written in C++ with its limits on
interoperability.

● Every step of data processing is represented by a filter that is independent from other
filters.

● Filters are pre-configured by external metadata: data that isn’t directly involved in data
processing.

● Consistent Data Transfer Object (DTO) between stages.

Inherently similar to the nucleus-nucleus modelling process on a general
timescale!

Data Pipeline Architecture

Generator Converter Converter Writer
DTO DTO DTO

Metadata

● Specialised data storage formats (HepMC, MCPL, etc.)
○ Possible standardization.
○ Actual integration of different models isn’t possible:

converter scripts are still required.
○ Most experiments stick to this solution.

● JETSCAPE
○ Focuses on jet modeling.
○ Possible to create new modules.
○ Modularization is at low level – resulting programs

can be quite complex.

Existing solutions

J.H. Putschke et. al. arXiv:1903.07706

● C++17 library for code organization without any external dependencies. This standard has
been chosen for compliance with modern ROOT6(7) versions.

● Resulting programs contain the whole modeling pipeline in one executable file.

● Engrained modularity: each model is a filter in the data pipeline.

● Filters are provided by separate libraries with their own set of dependencies and are
exposed to control code via dependency injection (DI) process.

● Filters are configured by an XML file during modeling pipeline construction via separate
factory classes. Therefore, it isn’t needed to build the code to change a model.

● CMake integration: COLA library and modules are CMake packages.

https://github.com/Spectator-matter-group-INR-RAS/COLA

COllision LAyout for Colliders (COLA)

● Data transfer object (DTO), accurate
Lorentz vector implementation.

● Abstract filter classes and factory.

● Manager classes: registration of
filter factories and config file
parsing by TinyXML-2* (DI).

● CMake build and installation
instructions.

COLA Structure

*) https://github.com/leethomason/tinyxml2/tree/master

● An event generator module that is a wrapper of
a popular TGlauberMC implementation of the
Glauber model. This implementation is used in
our AAMCC-MST model.

● Nuclei are set up stochastically and then
“collided”, assuming the nucleons are
propagating in a straight line along the beam
axis, with them being marked as wounded or
spectator.

CGlauber generator

S. Loizides, J. Kamin, D. d’Enterria, Phys. Rev. C, vol. 97, p. 054910, 2018

● Implementation details are concealed, interaction with the module happens only through
overloaded call operator.

● Generator class is created by a separate factory class from XML readout.

https://github.com/apBUSampK/CGlauber

CGlauber generator

● Each library in the ecosystem is a CMake package.

● COLA package sets up the COLA_DIR variable for modules to be
installed in the same directory.

● Module packages set up dependencies for the module.

CMake integration

Module/CMakeLists.txt

COLA/COLAConfig.cmake.in

Module/ModuleConfig.cmake.in

● Compact and simple.

● Dependencies are handled
by CMake packaging.

● Main is set up only once for
a set of required models.

● One can quickly switch
between registered models
by changing the config file.

Entire end-user program
CMakeLists.txt

main.cpp

config.xml

● Library maintenance: stable DTO, documentation revamp. Release by the end of the year.

● New modules: UrQMD event file reader (BM@N requirement), SMASH, HepMC3, etc.

● Documentation for existing modules.

● Performance testing: comparison to existing monolith programs.

● Multi-threading support in manager class.

Project backlog

● Created prototype demonstrates possibilities of modularization
in application to heavy-ion collision modelling.

● DI can be implemented in C++ with abstract factory pattern and
allows for efficient dependency decoupling.

● CMake packages prove to be a useful tool for managing
dependencies

● A foundation for COLA ecosystem has been set. While still
lacking in modules, it can significantly simplify Monte Carlo
modelling in future. We are open to collaborations and ready to
help with model integration!

This work was supported by the Ministry of Science and Higher
Education of the Russian Federation, Project FFWS-2024-0003.

Summary

