T,
A MESHCHERYAKOV (SPD)
' LABORATORY of
4 INFORMATION

% TECHNOLOGIES

[}

AN
T

Workload Management System
Development for
SPD Online Filter

Nikita Greben, MLIT
AYSS-2024, Dubna

SPD experiment at NICA collider m

The SPD detector (Spin Physics Detector) is one of the NICA infrastructure projects designed to study the spin
and momentum of gluons and their distribution.

Clean Room
BM@N (Defecior (Detector Electronics) SPD L .
il e g (D)fa > Polarized proton and deuteron beams
it = % ' colicer > Collision energy up to 27 GeV
LN oo > luminosity up to 10%2 cm=2 s |
> — / S S Ercovling > Bunch crossing every 80 ns = crossing rate
nal target ¥ 0’ »‘ 4
Heavy lon Linac \/\I e ’ 1 I""I e— ” pr= \ 12-5 MHZ
lon source ((Boosre ﬂ)) / A !Q \.\ Y
LU- 20 ‘b ‘ Cryoéeni;s !! Magnet factory
é Nuclofron
6| LHCb
U @KTv @
et SPD CMS
> Number of registration channels in SPD ~ 500000 § 10 3 ‘ ATLAS
> ~ 3 MHz event rate (at max luminosity) = pileups 5 : ‘ ‘CDF
o ~ 20 GB/s (or 200PB/year) “raw” data B 100k COMPASS o °
> Physics signal selection requires momentum and vertex = - ‘H B
reconstruction 3 &l OPAL @B LiCE
o =>no simple trigger is possible - ‘BELLEI
PR | - | L
10° i0° 10° 10’

Event size (Bytes)

Triggerless DAQ

Triggerless DAQ means that the output of the system is not a set of raw
events, but a set of signals from sub-detectors organized into time slices.

YVY

()

Frontend SPD DAQ

N channels N channels N channels
ADC pe » ADC
\ / Vi \ /
. f Read out

@@ Processing

3 MHz event rate

v i~

Data buffer _Jl

v

Event building, SPD On-line Filter
Filtering

\ 4

S

Data-Logging
150 kHz event rate

Storage ?

«triggerless» DAQ

Free-run SPD DAQ

40 Builder nodes

20 GB/sec

f Input buffer
compute
l v l v l e

O w Application
O wwn storage
0 e (Read)

sl

> DAQ provide data organized in time frames which placed
in files with reasonable size (a few GB).

> Each of these file may be processed independently as a
part of top-level workflow chain.

> No needs to exchange of any information during handling
of each initial file, but results of may be used as input for
next step of processing.

SPD

(sPD)
High-throughput computing m

> HTC is defined as a type of computing that simultaneously executes

Data unpacking

numerous simple and computationally independent jobs to perform a

data processing task. ML Reco Classic reco
> Since each data element can be processed simultaneously, this can be

Event building

i I

Performance and data
quality monitor

applied to data aggregated by a data acquisition system (DAQ).
> To ensure efficient utilization of computational resources, data

Online polarimetry Event selection

|

Merge and packing data for offline processing

processing should be multi-stage:

o One stage of processing — task

o Processing a block of data (file) — job

Data processing work chain example

Task

dataset: dat.l

executable: reco.exe

size: 4Tb J

job 1 job_1024
file: file_1 file: file_1024
executable: reco.exe = executable: reco.exe
size: 4Gb size: 4Gb

Task-job relationship 4

SPD Online Filter as a middleware software

«SPD OnLine filter» — hardware and software complex
providing multi-stage high-throughput processing and filtering
of data for SPD detector.

A

r l Input buffer b’_l
Files management

Storage managment Data files

> Data management system (one PhD student and one ﬁ
Workflow —JOb—v
master student) S mf [e |
o Data lifecycle support (data catalog, consistenc ﬁ . SR ™ IES
h k | y ptF) (g y Data & Storage ¢ “
check, cleanup, storage); Flosio | Workdoad | [~
p g) (sheduler)
> Workflow Management System (master student) Ej —i
o Define and execute processing chains by generating g I
the required number of computational tasks; Data fles
> Workload management system: Pleniinini A
o Create the required number of processing jobs to
perform the task; Architecture of SPD Online Filter

o Control job execution through pilots working on
compute nodes;

Workload management system requirements

The key requirement - systems must meet the high-throughput
paradigm.

3

Task registration: formalized task description,
including job options and required metadata
registration;

Jobs definition: generation of required number of
jobs to perform task by controlled loading of
available computing resources;

Jobs execution management: continuous job state
monitoring by communication with pilot, job retries
in case of failures, job execution termination;
Consistency control: control of the consistency of
information in relation to the tasks, files and jobs;
Scheduling: implementing a scheduling principle for
task/job distribution;

RabbitMQ Global queue
0 > ‘ Task, I Task, 4 I I Tasks ‘ Task, ‘ Task, ‘
Dataset#1 Dataset#2 Dataset#3

rank 3 rank 5 rank 3
chunk chunk, chunk

file 1 file 1 file 1

file 2 file 2 file 2

file 3 file 3 file 3

file 4 file 4 file 4

file 5 file 5 —»Jobgen. file 5
chunk, chunk;

file 1 file 1

file 2 file 2

file 3 —» Job gen file 3

file 4 file 4

file 5 file 5

file 6 file 6

file 7 file 7

file 8 file 8

chunk

file 1
file 2
file 3

—> Job gen.

Forming jobs based on dataset contents, one file per one job

(sPD)
Architecture and functionality of Workload Management System m

Workflow
Management
System

> task-manager — implements both external and

internal REST APIs. Responsible for registering T
tasks for processing, cancelling tasks, reporting on RabbitmQ |
current output files and tasks in the system. e
) i .) : I T Task management -
> task-executor - responsible for forming jobs in the 1 restres ! ﬁ”ﬁiﬁéﬂﬁ.’i’
1 ! System
system by dataset contents. S A . —

> job-manager — accountable for storing jobs and i:";':f!;?éfﬁ?&::i; R W
files metadata, as well as providing a REST APl for | '

N Job 4 Register files
~

S e e e . e e e wm e m em e em Em e e e e e e e e e e e e e e e -

the executed jobs.

> job-executor — responsible for distribution of jobs

Job-Register

to pilot applications, updating the status of jobs - . Jebmanagement

T RDBMS
Postgres

> pilot - responsible for running jobs on compute
., - - - CPU payload - - —4— Pilot

\
!
1
!
I
I
(I
1
Get chunk 1,
Get ready Job Job-Executor g !
(I
I
I
I
1

DAO & Manage

nodes, organizing their execution, and

1

Job-Manager Get

Change job's priority

communicating various information about their

G
3
]

- - - GPU payload - - - <— Pilot

hearbeat
7 status update

progress and status.

- e e e am e e e e e e e e e - - - — -

SPD Workload Management System High Level Architecture 7

Pilot Agent

>

>

The agent application is deployed on a compute node
and consists of the following two components: a UNIX
daemon and the pilot itself.

The UNIX daemon's objective is to run the next pilot by
downloading an up-to-date version from the repository.
Pilot itself is a multi-threaded Python application
responsible for

o Receiving and validating jobs from the message
broker;

o Downloading input files for the payload stage and
uploading the result files to the output storage;

o Launching a subprocess to execute a payload
(decoding DAQ format, track recognition algorithm,
etc.)

o Keeping the upstream system informed of the
current status of the payload and the pilot itself via
heartbeat/status updates during each phase of
pilot execution;

Two types of nodes:

JobExecutor GPU queue

Multi-CPU

Multi-CPU + GPU

l

Two communication channels:

e HTTP (aiohttp)
e AMQP (message broker - RabbitMQ)

CPU queue

job11

job21

job12

job22

bemmme e oo - — - - - payload- - - - 5

A detailed job status model has been described;

Repository

Main thread

Payload
Thread

Error codes introduced;
Pilot ran through all stages of the job execution (Directed Acyclic

Graph);

|

Daemon

Pilot at this stage runs a script that does a basic hash compute;

UNIX Daemon is implemented and currently running;

Interaction with Workflow Management System

The following interaction scenarios have been identified with the Workflow

Management System

> Registration of a task for processing: WfMS passes the task
description into the message queue;

> Summary of current intermediate properties of jobs/files in the
system: aggregated information about the status of each job/file
for further decision making;

> Task cancellation: based on the decision made on the WfMS (too
many errors occurring) on operator side;

> Change priority of a task: is used to accelerate the rate at which

the corresponding dataset is being processed;

Workload
Management [<-
System

—————————

Data & Storage
Management
System

Get jobsfiles su
Cancel/Update priority of a Task

Workload-
Dispatcher

GET Status
POST Status
Get/Update tasks statuses

..............................

Get Output &
------ e Log Dat. Sk
! datas
dataset.register.upload
4 dataset. register. upload.digq dataca
Task . dataset
'

1
DSM-Listener Jiid

Get/Update Tasks
Get/Update Datase s Ge

'
et.register.close
dataset.register.close.dlq

register.delete.dlq

Task-Generator

Get npb[b

t.register.delete

RDBMS
DAO & Manage
Postgres I
WfMS-manager

> AP|/<

Workflow Management System

Interaction with Data Management System

Routing Key

Msg

Algo

dataset.close

Dataset info
e Dataset UID
e File check list (file

Request the registered files in the dataset. If

they match the checklist, set the status to
CLOSED. Otherwise, return the messages

names) back to the queue for deferred execution.
dataset.upload | Dataset UID Marking dataset for uploading
(TO_UPLOAD)
dataset.delete Dataset UID Marking dataset for deletion (TO_DELETE)

Signature and algorithm of message receiving gateways for the dsm-register service

Within a Workload Management System, there are several scenarios

for interacting with the data management system:

> Obtain information about dataset contents for forming jobs from

DSM-Manager (Data Catalog REST API)

> Register files in datasets after executing payload on compute
node — DSM-Register (Data Registration)

> Close dataset after cancellation or sufficient number of
successfully processed files — DSM-Register*

DAQ

Register Dataset of

DSM (Data & Storage Management)

Input Files

/ DSM-Register }»Message—n" MQ e
4")

N

(Monitoring &

DSM-Inspector |
updating services)

G _i—

Tﬂm\o & Manage") DSM-Manager
Data Catal)

i e

Register files
Close dataset

Workload
management

A

/

Delete & Upload
dataset A 4

Workflow
management

Architecture of Data Management

Tereschenko, D., Ponomarey, E., Oleynik, D. et al. SPD On-Line Filter: Workflow and Data Management Systems. Phys. Part. Nuclei 55, 603—605 (2024).

Database design
RDBMS - PostgreSQL 16

Tables:
% alembic_version — managing and tracking

database schema changes

file_dat — a directory specifying the output files ®

and logs generated on the pilot 2 S
job_dat — jobs currently being processed in the £ version
system

task_dat - current tasks in the system

Extra mechanisms:

Indexes — on filter fields for optimization of
operations (B-tree);

Procedures - task and job generation for test
pUrposes;

Triggers — rank update logic;

Decomposition — single database per
microservice (Postgres in Docker initially)

L3

<& public

] job_dat
id

] parent_job_id

[task_id

] executable

args

rank

state

[retries
cur_retry

] device_type

1 mode

[] created_at

updated_at

o

< public

= file_dat
id

2 job_id

1 file_name

1 file_url

A type

[l size

] status

] check_sum

] created_at

71 updated_at

&
& public
Q 1 task_dat
. id
<> public
v] executable
— pilot_dat
. Il args
i
] rank
] job_id
I device_type
Il device_type
] mode

[] created_at =

(1) data_in_uid
7 updated_at -

] data_stor_url

[] data_out_url

ER Diagram of the Workload
Management System Database

11

Tech stack

Common

> Python 3.12

> docker compose - running
multi-container applications

DB

> PostgreSQL - RDBMS

> Alembic (Migration)

> SQLAIchemy 2.0

> asyncpg - Postgres DBAPI

Frameworks

>

aio-pika (RabbitMQ + asyncio) -
asynchronous API with RabbitMQ

> FastAPI + uvicorn

Extra

> aiohttp - asynchronous HTTP
client/server framework

> Pydantic - validate and serialize data
schemes

> pytest-asyncio - test purposes

12

(sPD)
Current Status

Design of services:
v Designed and implemented a list of required REST APl methods and their signatures;

v Implemented a mechanism for declaring the data model in the database based on ORM and migration
scripts;

Configured CD tools (build and deployment) on the JINR LIT infrastructure;
Designed inter-service interaction scenarios — defined API contracts;

Designed Pilot internal architecture;

SN SN N SN

Workload Management System - Pilot Interaction Models in Finite State Machine.

Prototype of services:

v Most microservices implemented;
Job management subsystem is the most advanced: most interactions implemented and being tested;
Task partitioning is being implemented;

Pilot and Pilot Daemon is currently working;

SN SN NS

Pilot handles all stages of job execution on the given workload.
13

(sPD)
Next major steps m

[Task processing
A Execute the entire workchain set up on the level of WfMS.
@ Middleware and applied software integration
[Requires prototyped applied software and simulated data.
[Logging
A Currently, each microservice logs are mapped to the host via a shared file system between Docker and the host.
A Ideally — ELK (Elastic-Logstash-Kibana) stack to build a log analysis platform.
d Configuration
A Consider to centralize some of the shared configurations across multiple services (Consul, Etcd).
d Documentation
A Given the increasing complexity of the internal logic of the software, it is necessary to document each step of the
development.
A Metrics and monitoring
A For example, service query-per-second, API responsiveness, service latency etc. (InfluxDB, Prometheus, Graphana)

14

Thank you for your attention!

15

Backup slides

16

Task and job definition m

> A task is a workload unit responsible for processing a
block of homogeneous data - dataset.

> A processing request is a set of input data, which may Task
consist of multiple files, and a handler. dataset: dat.1

> The criterion for the completion of the task is the executable: reco.exe
processing of the entire block of data. size: 4Tb

> The Workflow Management System is responsible for

defining and executing workflows, as well as defining a

processing request, which is a task. job_1 job_1024
file: file_1 v file: file_1024
executable: reco.exe HER executable: reco.exe
> A job (payload) is a unit of work that processes a unit of size: 4Gb size: 4Gb
data (file).

. _ , , L Task-job relationship
> The unit responsible for processing a single file in terms of

workload is called a job.

> The Workload Management System is responsible for
generating jobs, sending them to compute nodes, and
executing them.

17

Dataflow and data processing concept m

Main data streams: U;U

% SPD DAQs, after dividing sensor signals into

time blocks, send data to the SPD Online — o ‘
Filter input buffer as files of a consistent size. W et S

Input Data Middle Data Output Data

% The workflow management system creates o 4
and deletes intermediate and final data sets 3 o

% The workload management system i T
“populates” the data sets with information 3

about the resulting files
% At each stage of data processing, pilots will

read and write files to storage and create
secondary data

18

Modularization: deploying and using own packages

Following tools are used:
% Poetry

> Particularly good at handling complex
dependency trees and ensuring that the different
modules can integrate with each other without
version conflicts
% Python packages
> Separate GitLab repositories for each package
> Poetry for packaging and dependency
management
% Gitlab
> Access Tokens used as kind of credentials for
scripts and other tools
> CI/CD for automate testing and building

W WMS[EI Qv New subgroup

Subgroups and projects Shared projects Archived projects Q Search Name v | T=
e J job-executor (& Owner 0 Q1 &1
e J job-manager & Owner 0 Q1 81
o T task-executor (3 Owner 0 Qo &1
e T task-manager & Owner 0 @1 &1
W wms-schema & * 0 1 week ago

wms-schema
blishe

£ PyPl & Lastdownloaded May 29, 2024

History
(@© wms-schema version 0.2.0 was first created 6 days ago

@ Published to the wms-schema Package Registry 6 days ago

Installation Show PyPi commands v

Pip Comman d
pip install wms-schema --index-url nttus://,,tnken,,:<vour,persul\al,token—packaqes/PYPi/smple (5}
You v ed a personal access toke

Registry setup

If you haven't already done so, you will need to add the below to your .pypirc file.
[gitlab]
eeeeeeee = __token__

password = <your personal access token>

For more information on the PyPi registry, see the documentation.

wms-schema is a package that contains a scheme for task and job data that is used
in almost every other service

19

Interaction with the Pilot Agent

*

0‘0

2
%

Pilot has a series of prepossessing stages before running a job itself:
a. start logging

b. read configuration

c. getting a job from message queue

d. validation
After those steps the Pilot launches another thread where it does
environment setup script
copying files locally from the input storage
starts execution of a job itself in a separate sub-process
analysis of the result of a job
copying output data and logs to storage
sends regular messages to WMS

g. cleaning up the local environment

Pilot sends status-update message at any point of internal changes
WMS may terminate the job if the corresponding task is cancelled or if an
error occurs.

-~ P Q200D

GPU queue CPU queue
job2 job2
job1 job1

/_/

N A 4

CPU+GPU CPU

SPD

20

(sPD)
Prototyping Job-Manager (API)

e The chosen framework for building the service is FastAPI + Uvicorn asynchronous framework
e A basic set of CRUD operations on data in the form of REST API is developed.
e API description autogeneration according to OpenAPI 3.0 specification is implemented (available in Swagger Ul at <server address>/docs)

job-manager “¢ Jobs o~
/v1/jobs/get-job/{id} Getjob v
Tasks ~
0s1 /v1l/jobs/create-job/ Createjob A
13 /v1/tasks/get-task/{id} GetTask v
Creates a new job.
/v1l/tasks/create-task/ Create Task v
Args: payload: Job data to create based on JobSchema (format for newly generated jobs). db_session: Database session dependency.
/vl/tasks/get-all-tasks/ GetAlTasks N7 Returns: The newly created job data in JSON format.
Raises: HTTPException: If job creation fails.
Jobs ~
p = e v I =
/v1/jobs/get-job/{id} Getjob e o
/v1/jobs/create-job/ Createjob v

No parameters

GE /v1/jobs/get-all-jobs/ GetAlljobs v
Request body application/json v

‘ LIE3N /v1/jobs/delete-all-jobs/ Delete Alljobs v
Example Value | Schema
/v1/jobs/get-one-ready/ GetOne Ready v
/v1/jobs/get-jobschema-ready/ Getjobschema Ready v
/v1/jobs/get-chunk-ready/{chunk_size} GetChunk Ready v
/v1/jobs/update-job/{job_id} Updatejob v
/v1/jobs/update-job-new/{job_id} Updatejob New v
/v1/jobs/get-jobschema/{id} Getjob Schema v
Files A
}
: : A 5 1.
- - Get Input File Id N7
/vi/files/get-input-file/{id} GetinputFile o
{
/vi/files/get-output-file/{id} GetOutputFileld v "file_name”: "string",
E /v1/files/get-log-file/{id} GetlogFileld v
/vi/files/get-all-input-files/{job_id} GetAllnputFiles v Responses
/vi/files/get-all-output-files/{job_id} GetAl OutputFiles v e .
Code Description Links
GE' /vl/files/get-all-log-files/{job_id} GetAllLog Files v

Swagger Ul with job-manager service AP description Example of a service call to post a new job 21

Prototyping Job-Executor - Pilot (RabbitMQ queues)

e RabbitMQ is selected as the message broker

e Queues are defined using the declarative notation of the aio-pika tool
e At the start of the application their unfolding is performed

E Ra b b | t RabbitMQ 3.11.28 Erlang 25.3.2.9
Overview Connections Channels m Queue

s Admin

Exchange: jobs

Overview

Message rates last minute ?

Publ

21:14:30 21:14:40 21:14:50 2111500 21:15:10 21:15:20
Details
Type | direct
Features
Policy
Bindings

This exchange

!

To Routing key = Arguments

CPU i
pilot-cpu

GPU i
pilot-gpu

Configured RabbitMQ queues

lish (In) 0.00/s

Publish
(Out)

=]

00/s

To Routing key | Arguments

cpPU
amgq.gen-uZThpsVHSQt0udUh1NcuYg ‘

amgq.gen-uZThpsVHSQtOudUh1NcuYg

Add binding from this exchange
| To queue v

Routing key:

Arguments: N ‘ String V"

Publish message

Routing key: | CPU

Headers: ? = \String v }

Properties: ? o

Payload: {
“id": 11,
“task id": i
“execut "2
"azgs": "-in file in 1157 file in 1158 -gut file out 1157 file out 1158",
"zank": 1,
“device type": "CPU
"files in url": [
{
"file name”: "file in 11577,

/data/sSPDOF-buffers/input/file in 1157",
“input”,
"size": 1073741824,

"status": {"state”: "ready”, "error code": "", "info": "File is ready to be processed"},
"check sum™: "a9f8c7e6-4a9b-4f0a-8f2c-9c4ada3fefef”
I
{
"file in 11587,
/data/sSPDOF-buffers/input/file in 1158",
"type": "input".
"size": 1073741824,
"status": {"state": "ready”, "error code": "", "info": "File is ready to
"check sum™: "3faB5f64-5717-4562-b3fc-2c963f66afa7"
}
1.
“files out url": [
{
"file name”: "file out 1157",
"file url": "/data/SPDOF-buffers/output/file out 1157",
"type": "gutput”,
"status": {"state”: "readv” "error code": "" "infa": "This file should he created"}

Payload encoding: ‘String (default) v‘

Publish message

Jobs could be delivered manually

Examples of Templates and Tasks

Registration and authorization
Template and task output
CWL template creation by user

Templates Tasks

Create templ

Template Manager

a@aaa.aaa

template_id name inner_dataset_mask description status

":{"run

1 template1 .test. '‘CommandLineTool", "baseCommand": "echo”, "inputs": ACTUAL
{"dataset_name": {"type": "string"}, "processing_program": {"type": "string"},
"processing_program_version": {"type": "string"}, "cable_map": {"type": "File"}, "input_params": {"type":

"File"}}, "outputs": {"output_dataset": {"type": "File"}, "log_dataset": {"type": "File"}}}, "in":

{"dataset_name": ".test.", "processing_program": "processing_program", "processing_program_version":
"processing_program_version", "cable_map": "cable_map”, "input_params": "input_params"}, "out":
"[output_dataset, log_dataset]"}, "reconstruction”: {"run": {"class": "CommandLineTool",
"baseCommand": "echo", "inputs": {"dataset_name": {"typ string"}, "processing_program": {"type":
"string"}, "processing_program_version": {"type": "string"}, "cable_map": {"type": "File"}, "input_params":
{"type": "File"}}, "outputs": {"output_dataset": {"type": "File"}, "log_dataset": {"type": "File"}}}, "in":
{"dataset_name": ".test.", "processing_program": "processing_program", "processing_program_version":

"processing_program_version", e | =g

cable_map": "cable_map", "input_params": "input_params"}, "out":
"[output_dataset, log_dataset]"}}}

{"steps": {"decoding": {"run": {"class": "CommandLineTool", "baseCommand": "echo", "inputs":
{"dataset_name": {"type": "string"}, "processing_program": {"type": "string"},
"processing_program_version": {"type": "string"}, "cable_map": {"type": "File"}, "input_params": {"type":
"File"}}, "outputs": {"output_dataset": {"type": "File"}, "log_dataset": {"type": "File"}}, "in":

{"dataset_name": ".test.", "processing_program": "processing_program", "processing_program_version":

"processing_program_version", "cable_map": "cable_map", "input_params": "input_params"}, "out":
"[output_dataset, log_dataset]"}}}

2 template2 .test. ARCHIVED

Created template

Preliminary validation and writing of CWL templates to the database

20

21

22

23

24

task_id wflow_id

6

Template Manager

exec
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program
processing_program

processing_program

Templates Tasks

args rank device mode retry datas_in_id datas_out_id datas_log_id

cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 5 | CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 3 | CPU map 5
cable_map 1 CPU map B
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5
cable_map 1 CPU map 5

WfMS task description

26

27

31

32

36

37

41

42

46

47

51

52

56

57

27

29

32

34

37

39

42

44

47

49

52

54

57

59

28

30

33

35

38

40

43

45

48

50

53

55

58

60

status
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS

IN_PROGRESS

a@saa.asa

23

R&D

e Jobs scheduling algorithm

e Partitioning of a task
o Imagine a multitasking operating system.
o Each dataset represents a process, and each record
within a dataset is like a thread within that process.
o The algorithm acts as the operating system's
scheduler, allocating processing time to threads
based on their priority.

e Chunk size and rank/priority of a job as a basic control
unit:
rank;s1 = a X x; + B X y; + v X rank;

ZT; — aging, y; — retries

Cycle 2 Cycle 1
< > € >
q,
a, (w|Vv]u] IWRR =
as ME

Interleaved Weighted round-robin

Algorithm 1 Task Scheduling Algorithm

Variables:
global_queue — global queue with tasks
dataset — array of datasets
N — number of datasets
rank_max — maximum task priority
heap — binary heap storing maximum task priorities
rank — array with task priorities
Algorithm:

1: initilize_datasets(dataset)

2: build_heap(rank)

3: while true do

4: rank_max = heap.top()

5. for r =1 to rank_max do

6: for i =1to N do

7: if not dataset[i].chunk.empty() and rank[i] > r then
8: await dataset[i].chunk.cur_item

9: update(dataset[i].chunk — j cur_item)
10: else if dataset[i].chunk.empty() then

15 3 if dataset[i].chunk.cur_item then

12: dataset[i] = global_queue.head()

13: end if

14: update(rank]i])

15: update(heap)

16: end if

17: end for

18: end for
19: end while

Proposed task-partitioning algorithm

24

