

Project Motivation

Relevance: This project addresses the need for faster replacement of faulty equipment, minimizing delays that would otherwise occur while waiting for parts to be shipped. Additionally, when post-warranty service is our responsibility, having spare parts readily available will further expedite the repair process.

Project Objective: Development of a software tool based on statistical analysis methods to predict server equipment failures. This will enable better planning and stock management, reducing dependence on external suppliers.

Bathtub curve

The bathtub curve is a graph that represents the change in the observed failure rate of components over time. It consists of three main stages: **Early failures** with a high failure frequency, **Useful lifetime** with a nearly constant failure frequency due to random events, and **Wearout failures** with an increasing failure frequency due to wear.

=== START OF INFORMATION SECTION ===

Vendor: SEAGATE

Product: ST18000NM004J

Revision: E004 Compliance: SPC-5

User Capacity: 18,000,207,937,536 bytes [18.0 TB]

Logical block size: 512 bytes Physical block size: 4096 bytes

LU is fully provisioned

Rotation Rate: 7200 rpm Form Factor: 3.5 inches

Logical Unit id: 0x5000c500dad5185f
Serial number: ZR5ETNBY0000W332TVTX

Device type: disk

Transport protocol: SAS (SPL-3)

Local Time is: Mon Oct 23 12:35:22 2023 MSK

SMART support is: Available - device has SMART capability.

SMART support is: Enabled
Temperature Warning: Enabled
Read Cache is: Enabled
Writeback Cache is: Enabled

=== START OF READ SMART DATA SECTION ===

SMART Health Status: OK

S.M.A.R.T. REPORTS

S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) - is a technology used in hard drives to monitor and assess their condition. **SMART**-reports contain data on the hard drive's status, such as temperature, the number of read/write errors, the number of reboots, and so on.

System Architecture

OPENSEARCH STACK

A platform for data storage and retrieval that provides tools for visualization, monitoring, and managing large volumes of information in real-time. It provides the ability to use pipelines for preliminary data processing, which allows us to standardize and transform data before indexing.

Reports Differences

5 Reallocated_Sector_Ct	-0CK	100	100	000	-	18
9 Power_On_Hours	-0CK	100	100	000		28052
12 Power_Cycle_Count	-0CK	100	100	000		2610
170 Unknown_Attribute	P0CK	099	099	010		0
171 Program_Fail_Count	-0CK	099	099	000		16
172 Erase_Fail_Count	-0CK	100	100	000		0
173 Unknown_Attribute	P0CK	100	100	005		51541835777
174 Unexpect_Power_Loss_Ct	t -uuk	ממד	שטב	טטט		230
183 SATA_Downshift_Count	-0СК	100	100	000		0
184 End-to-End_Error	P0CK	100	100	090		0
187 Reported_Uncorrect	-0CK	100	100	000		0
190 Temperature_Case	-0CK	021	046	000	2	21 (Min/Max 7/46)
192 Unsafe_Shutdown_Count	-0CK	100	100	000		230
199 CRC_Error_Count	-0CK	100	100	000		1
225 Host_Writes_32MiB	-0CK	100	100	000		36 1 884
226 Workld_Media_Wear_Indi	c -0CK	100	100	000		0
711-121111-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-	2 60	400	400	222		

S.M.A.R.T. reports for Intel S3520 SSDs and Intel 545s

Parameter names **174**, **184**, **187**, and **190** vary between the two models, even though both are Intel SSDs. Utilizing pipelines simplifies subsequent analysis by eliminating duplication and enhancing data consistency.

```
5 Reallocated Sector Ct
                            -0--CK
 9 Power On Hours
                                                             53660
12 Power_Cycle_Count
170 Available Reservd Space PO--CK
171 Program Fail Count
                                                             425
172 Erase Fail Count
174 Unsafe Shutdown Count
                            -0--CK
175 Power Loss Cap Test
                                                             14150 (325 7195)
                            PO--CK
                                                 010
183 SATA Downshift Count
                                           100
                                                             184
184 End-to-End Error Count PO--CK
187 Uncorrectable Error Cnt -0--CK
190 Case Temperature
                                                             26 (Min/Max 13/31)
192 Unsafe Shutdown Count
194 Drive Temperature
197 Pending Sector Count
199 CRC Error Count
225 Host Writes 32MiB
                                                             1462063
226 Workld Media Wear Indic -O--CK
                                                             2539
227 Workld Host Reads Perc -0--CK
228 Workload Minutes
                                                             3219551
232 Available Reservd Space PO--CK
                                                 010
233 Media Wearout Indicator -O--CK
234 Thermal Throttle Status -O--CK
                                                             0/0
241 Host Writes 32MiB
                                                             1462063
 42 Host Reads 32MiB
                                                 000
                                                             2620611
    NAND Writes 32MiB
                                           100
                                                 000
                                                             6639976
                            -0--CK
                                     100
```

.

Required Space Estimation

The index database size increase remains linear over two years of data accumulation

RELIABILITY

A library that implements various methods for calculating and analyzing reliability data, including the Weibull distribution.

Backblaze

An American company specializing in providing online data storage and backup services. They publish detailed statistics on the performance of thousands of hard drives used in their data centers.

Weibull distribution

The **Weibull distribution** is used in reliability analysis, for example, to calculate the mean time to failure (MTTF) of a device.

Applications:

- Modeling the time between events.
- Survival analysis.

$$f_X(x) = \left\{ egin{array}{ll} rac{eta}{\lambda} \left(rac{x}{\lambda}
ight)^{eta-1} e^{-\left(rac{x}{\lambda}
ight)^{eta}}, & x \geq 0 \ 0, & x < 0 \end{array}
ight.$$

Probability Density Function

Histogram of the Data Used

- Fail Data operating time of failed disks
- Censored Data operating time of disks still in operation

Graph of the Probability Density Function (PDF)

The Probability Density Function (**PDF**) is used to describe the likelihood of a component failing at a specific moment in time or over a specific time period.

Results from Fit Weibull 2P (95% CI):

Analysis method: Maximum Likelihood Estimation (MLE)

Optimizer: TNC

Failures / Right censored: 20897/370412 (94.65972% right censored)

 Parameter
 Point Estimate
 Standard Error
 Lower CI
 Upper CI

 Alpha
 350354
 4995.48
 340699
 360284

 Beta
 1.19836
 0.00702269
 1.18468
 1.21221

Maximum Likelihood Estimation

Weibull distribution analysis conducted using Maximum Likelihood Estimation (**MLE**). We use the coefficients obtained from processing these data for future calculations. The plot indicates the likelihood of failure over time for the dataset and provides a visual confirmation of the Weibull model fit.

Data Overview:

Total samples: 370412

Failures: 20897

Right censored: 94.65972%, meaning that most data points did not fail within the observed period

Analysis Example

These are the forecasts based on **Backblaze** data for the approximate parameters of the computing infrastructure at **JINR**.

Probability of failure and expected number of failures by specific times:

Time 10000:
Probability of failure of one disk by time 10000: 1.3998%
Expected number of failures out of 4000 disks by time 10000: 56.0

Time 20000:
Probability of failure of one disk by time 20000: 3.1831%
Expected number of failures out of 4000 disks by time 20000: 127.3

Time 30000:
Probability of failure of one disk by time 30000: 5.1229%
Expected number of failures out of 4000 disks by time 30000: 204.9

Approximate number of components that will fail in the time interval between the first and second year [8760, 17520]: 61.08

