

Analysis of $\phi(1020)$ production in the BM@N experiment

Ramin Barak

28th International Scientific Conference of Young Scientists and Specialists, Dubna, October 27 – November 1, 2024

Introduction

- Collisions of heavy relativistic ions allow us to study nuclear matter at extreme density and temperature.
- At sufficiently high temperature and energy density, the so-called Quark-Gluon Plasma (QGP) is formed [1]:
 - Formation of strange particles.
- Theoretical models offer different descriptions [2],[3]:
 - New experimental data is needed for clarification.
- [1] Kapishin.M, "Studies of baryonic matter at the BM@N experiment (JINR)." Nuclear Physics A 982 (2019) 967–970.[2] J. A. et al Nucl. Phys., vol. A 757, pp. 102–183, 2005.
- [3] K. A. et al Nucl. Phys., vol. A 757, pp. 184–283, 2005.

BM@N experiment at the NICA complex

- Collisions of elementary particles and ions with a stationary target at energies up to 4 GeV per nucleon.
- Studying the properties of dense baryonic matter, the formation of hypermatter, the equation of state of symmetric and asymmetric nuclear matter, collective phenomena...

Goal

• Observation of $\phi(1020)$ signal in the MC and experimental data.

Data

- Experimental data obtained in the physical session at the beginning of 2023 with a beam energy of 3.8 AGeV, a CsI target and Xe beam.
- Dubna Cascade Model Statistical Multifragmentation Model (DCM-SMM) and BOX Monte Carlo generators were used to model the data.
- About 0.8 million Monte Carlo and 22 million experimental events were analyzed.

Data processing procedure

- Reconstruction of particle tracks was carried out.
- Mathematical algorithms were developed and implemented to search for the $\varphi(1020) \rightarrow K^+ + K^-$ decay:
 - shuffling pairs of particles with different signs
 - calculation of invariant mass
 - imposing a number of geometric restrictions on the parameters of each pair

PV – primary vertex.

Path – the distance traveled by $\varphi(1020)$ from the primary vertex to the point of its decay. DCA0 – the distance between the primary vertex and the projection of momentum of $\varphi(1020)$.

DCA1 – the shortest distance from K^+ to the vertex.

DCA2 – the shortest distance from K^- to the vertex.

DCA12 – the distance between K^+ and K^- at the decay point of $\varphi(1020)$.

6

MC

EXP

Conclusion and future work

- $\phi(1020)$ signal was observed in both MC and experimental cases.
- Increase the number of analyzed events in order to improve the results regarding experimental data.
- Derive more realistic values for kinematic parameters by means of other MC generators (UrQMD, PYTHIA).
- Compare MC results with experimental ones.
- Perform phase space analysis.

Backup

Cuts

MC:

0.0 cm <= dca12 <= 2.0 cm
0.0 cm <= dca0 <= 1.0 cm
0.15 $\frac{GeV^2}{c^4}$ <= mass_squared_K+<= 0.35 $\frac{GeV^2}{c^4}$
$0.7 \frac{GeV}{c} <= \text{momentum}_K + <= 2.5 \frac{GeV}{c}$
$-2.5 \frac{GeV}{c} <= \text{momentum} \text{K} <= -0.7 \frac{GeV}{c}$

EXP:

0.0 cm <= path <= 1.0 cm
0.0 cm <= dca12 <= 1.0 cm
0.0 cm <= dca0 <= 0.05 cm
0.0
$$\frac{GeV^2}{c^4}$$
 <= mass_squared_K+<= 0.75 $\frac{GeV^2}{c^4}$
0.0 $\frac{GeV^2}{c^4}$ <= mass_squared_K-<= 0.75 $\frac{GeV^2}{c^4}$