Estimating Neutrino Energy for the NOvA 3-Flavor analysis

Anastasiia Kalitkina (for the NOvA Collaboration) Dzhelepov Laboratory of Nuclear Problems

AYSS-2024

JOINT INSTITUTE FOR NUCLEAR

RESEARCH

NuMI Off-axis ν_e Appearance Experiment (NOvA)

- NOvA is a long-baseline off-axis neutrino oscillation experiment at US.
- Neutrino source is Fermilab's Megawatt-capable NuMI beam.
- Two functionally identical, finely granulated detectors, filled with liquid scintillator.

3 Flavor Physics at NOvA

- Accurate energy estimation is vital to make good measurements of oscillation parameters: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(E_{\nu}, \vec{\theta})$
- The estimation methods must be model independent and strong enough to handle different event topologies.

Event reconstruction

Reconstruction chain:

- 1. hits (cells, where a particle deposited energy)
- 2. slice (individual event interactions)
- 3. vertex
- prongs (hit clusters with a start point and a direction)
- 5. tracks (actual path of the particle)
- 6. identification

Reconstructed physics variables:

- energy of a neutrino event
- position of the interaction point
- directions of outgoing particles

Near Detector: 214 Planes, 290 ton Far Detector: 896 Planes, 14 kton

Event and particle classification

Event candidates that survive basic quality cuts pass into a deep-learning classifier CVN. (Convolutional Visual Network)

EventCVN: ν_{μ} CC, ν_{e} CC, NC, cosmic

ProngCVN: electron, muon, proton, pion, photon (used as part of the ν_e energy estimation)

 u_{μ} Energy estimator

Spline-Based Method

Muon neutrino or antineutrino energy is estimated as a combination of muon and hadronic deposited energy:

$$E_{reco} = E_{\mu} + E_{Had}$$

Spline-Based Method

Muon neutrino or antineutrino energy is estimated as a combination of muon and hadronic deposited energy:

$$E_{reco} = E_{\mu} + E_{Had}$$

Muon energy is estimated from a fit to Kalman track length.

Muon neutrino or antineutrino energy is estimated as a combination of muon and hadronic deposited energy:

$$E_{reco} = E_{\mu} + E_{Had}$$

Hadronic energy is estimated from a fit to visible deposited hadronic energy.

.....

Vu

Spline-Based Method

Muon neutrino or antineutrino energy is estimated as a combination of muon and hadronic deposited energy:

$$E_{reco} = E_{\mu} + E_{Had}$$

- Construct two-dimensional histograms of the reconstructed quantity vs the true quantity.
- For each bin of reconstructed energy a Gaussian fit is performed.
- The mean of the Gaussian in each slice is used to fit a piece-wise linear spline.

Muon neutrino energy resolution

 ν_{μ} energy estimator performance of the Ana2024 energy estimator in terms of overall bias and resolution is taken as the mean and standard deviation of the fractional energy reconstruction error

$$\delta_E = \frac{E_{reco} - E_{true}}{E_{true}}$$

Dubna, AYSS-2024

 ν_e Energy estimator

Electron neutrino energy estimator

Calorimetric Method based on ProngCVN

Electron (anti)neutrino energy is estimated by a quadratic fit function, dependent on the electromagnetic (EM) and hadronic (Had) components, because EM and Had deposition have different detector response:

$$E_{reco} = k \cdot \left(p_1 E_{EM} + p_2 E_{EM}^2 + p_3 E_{Had} + p_4 E_{Had}^2 \right)$$

Electron neutrino energy estimator

Calorimetric Method based on ProngCVN

Electron (anti)neutrino energy is estimated by a quadratic fit function, dependent on the electromagnetic (EM) and hadronic (Had) components, because EM and Had deposition have different detector response:

$$E_{reco} = k \cdot \left(p_1 E_{EM} + p_2 E_{EM}^2 + p_3 E_{Had} + p_4 E_{Had}^2 \right)$$

Energy deposited by all EM-like prongs.

Electron neutrino energy estimator

Calorimetric Method based on ProngCVN

Electron (anti)neutrino energy is estimated by a quadratic fit function, dependent on the electromagnetic (EM) and hadronic (Had) components, because EM and Had deposition have different detector response:

$$E_{reco} = k \cdot \left(p_1 E_{EM} + p_2 E_{EM}^2 + p_3 E_{Had} + p_4 E_{Had}^2 \right)$$

Rest of the calorimetric energy.

Estimator adjusting

$$E_{reco} = k \cdot \left(p_1 E_{EM} + p_2 E_{EM}^2 + p_3 E_{Had} + p_4 E_{Had}^2 \right)$$

The parameters $p_{1,...,4}$ are optimized to produce the best energy resolution $\sigma(\delta_E)$, where:

$$\delta_E = \frac{E_{reco} - E_{true}}{E_{true}}$$

To get the fitted parameters, a χ^2 -fit is performed on the reweighted Monte Carlo sample, which has a flat distribution in true energy.

$$\chi^{2} = \sum_{(x,y)} \left(\frac{\bar{E}_{true}(x,y) - E_{reco}(x,y,\mathbf{p})}{\sigma(x,y)} \right)^{2}$$

New strategy for fitting

Problem The fitting results (scaling factor k and parameters **p**) can be very sensitive to the fitting range.

Solution Find the fitting range that gives the best results. The decision is made relying on a set of variables:

- mean of δ_E
- standard deviation of δ_E
- skewness of $\delta_{\textit{E}}$
- maximal variation of mean values of $\delta_{\rm E}$ along the weighted true energy

Electron neutrino energy resolution

The average energy resolution is

- 10.8% for the neutrino beam,
- 8.5% for the antineutrino beam.

Conclusion

- Each new analysis requires retraining energy estimators, as they are based on Monte Carlo simulations.
- Good adjusted energy estimators are important for making precise measurements of oscillation parameters.
- In the latest NOvA 3 flavor neutrino oscillation analysis,
 - calorimetric method based on ProngCVN was used for $\nu_e/\bar{\nu}_e$ events.
 - tracking spline-based method was used for $u_{\mu}/\bar{
 u}_{\mu}$ events.
- Both methods are well understood and provide good performance.
- For the future analysis, alternative neutrino energy estimating approaches based on machine learning algorithms are under construction.