28th International Scientific Conference of Young Scientists and Specialists (AYSS-2024)

A new algorithm for optimising the parameters of a high-performance neural network

<u>V.Kiseeva</u>

JINR team: I.Boyko, A.Didenko, O.Dolovova, N.Huseynov, V.Lybushkin, I.Yeletskikh

29.10.2024

Motivation: tH signal

 The number of signal events is extremely small compared to the number of background events

for LHC Run2 expected: ~100 tH; ~200k total background

Signature of tH with decay $H \rightarrow b\overline{b}$: (\geq 3 b-jets) + (1 light jet) + (1 tight lepton) + (missing transverse momentum)

Motivation: signal vs background

• The kinematics of signal and background processes are very similar

signal: tH process

main background: ttb production channel

DATA		
tH	MiniNtuplethbqSM_300K.root	Entries :8300
tt	MiniNtiple_tt_SM_3M.root	Entries : 13994

A **neural network** is a function with large number of internal parameters. **Internal parameter**: w1...w6 and b1...b6

- Number of layers
- Number of neurons in a layer
- Activation functions:

- Input variables
- Number of training iterations
- The size of the batch of parameters trained at a time
- Training algorithms: Adam, SGD, RMSprop, ...

Problem of classical methods. Why not Keras?

Library such as Keras and other cant hold functions which cannot calculate the derivative directly, due to the implemented algorithm

Implementing Algorithms with Arbitrary Optimization Functions

- The goal is to allow user to choose any function for optimization
- Cross-entropy is now optimized during network training.
- ROC-AUC is an example of optimization metric with clear physical meaning.

Cross-entropy

ROC-AUC

physical sense AUC = \[]Background_Rejection d(Signal_Efficiency)

Neural network. Training algorithms

Training algorithms - algorithms for searching parameter values. The algorithm minimizes the measure of difference between the "true" value of the target variable and the value predicted by the neural network.

Practically used algorithms try to combine the advantages of deterministic and stochastic methods. In most problems, a sufficiently **deep local minimum** is a satisfactory solution.

Neural network. Training algorithms

Neural network. Input variables

	Name	Separation (SM) [%]	for SM	
1	lead_lep_charge	3.32		Charge of the leading lepton
2	N_b	10.71		Number of jets generated by b-quarks
3	n_nonb	2.79	excluded	Number of jets generated by quarks other than the b-quark
4	HT_alljets	1.34		Algebraic Sum of all transverse momenta
5	delta_eta_tH	8.41		Difference between the pseudorapidities of the top quark and the Higgs boson
6	sphresity_alljets	8.85		A measure of the uniformity of jet distribution in space
7	sphresity_Inu4maxje	8.83		A measure of the uniformity of jet distribution in space
8	sphresity_allobjects	8.62		A measure of the uniformity of jet distribution in space
9	aplanarity_allobjects	8.23	excluded	A measure of the deviation of jets from one common plane
10	higgs_m	5.94		Recovered mass of the Higgs boson
11	mass_tH	6.73		Invariant mass of the t-quark and Higgs boson
12	aplanarity_alljets	8.54	excluded	A measure of the deviation of jets from one common plane
13	aplanarity_Inu4maxjet	7.94	excluded	A measure of the deviation of jets from one common plane
14	delta_eta_FWD_t	7.35		Pseudo-rapidity difference between the t-quark and the front jet
15	min_chi	3.84		Quality of Higgs and Top Mass determinations
16	mass_H_CenJet	5.05		Invariant mass of the Higgs boson and the central light jet
17	mass_H_FWD	5.37		Invariant mass of the Higgs boson and the front jet
18	FWD_pt	5.37		Transverse momentum of a quark scattered forward
19	fwmlnujet1	5.51	excluded	First Fox-Wolfram moment composed of jets, lepton and neutrino
20	FWD_eta	4.95	excluded	Pseudofastness of a forward scattered quark
21	fwm1	4.67		First Fox-Wolfram moment composed of jets only
22	top_m	3.52		Recovered t-quark mass
23	fwm2	2.50	excluded	Second Fox-Wolfram moment composed only of jets
24	DeltaR_qqW	2.89		Angle between jets of hadronic decay of w boson
25	RapGap_maxptb	1.93		Difference between the pseudo-velocities of the front jet and the b-jet with the highest pt
26	RapGap_closest	1.79		The difference between the pseudo-velocities of the front jet and the b-jet closest to it
27	Central_non_b_maxpt_pt	1.68		Highest transverse impulse among light jets
28	FWD_m	1.63		Invariant mass of the front jet and t quark
29	lead_lep_eta	2.04	excluded	Pseudofastness of the leading lepton
30	jet_b2_e	1.48		Energy of the b-jet second in transverse momentum
31	W_T_m	1.63		Transverse Mass of all jets
32	InvMass_3Jets	12.24		Invariant mass of three jets

Neural network. Input variables.

Test of optimization NN parameters.

	config n.1	config n.2
Number of NN training	5	5
Input variables	2	22
Hidden Layers	2	2
Neurons per layer	3,3	3,3
Activation function	Tanh	Tanh
Optimization Function	1-ROCAUC	1-ROCAUC
Number of "shaking"	5	5
Number of batch	not used	not used
Batch size	not used	not used

Best results of training

Test of optimization NN parameters

Number of configuration	configuration n.1	configuration n.2	configuration n.3	05 jiti
Number of NN training	100	100	100	Ē
Input variables	22	22	22	20
Hidden Layers	2	2	2	-
Neurons per layer	3, 3	3,3	3,3	10
Activation function	Tanh	Tanh	Tanh	-
Optimization Function	1-ROCAUC	1-ROCAUC	1-ROCAUC	0
Number of shaking	10	100	150	02 20 25
Number of configuration	configuration n.1	configuration n.2	configuration n.3	0.00
Number of NN training	100	100	100	itries
Input variables	22	22	22	с 25 Ш
Hidden Layers	2	2	2	20
Neurons per layer	25, 25	25, 25	25, 25	15
Activation function	Tanh	Tanh	Tanh	10
Optimization Function	1-ROCAUC	1-ROCAUC	1-ROCAUC	5
	10	100	150	

GRID Search spa	ace
Number of (hidden) layers	2
Number of neurons per layers	3, 25
Number of batch	100
Number of shaking (epoches)	10, 100, 150

2 hidden layers, 3x3 neurons

The network receives 22 variables as input and outputs 1 variable (network response), which accumulates the differences between the signal and the background contained in all 22 input variables.

Results

- New method of NN training has been developed from scratch
- Currently ROC integral is optimized as loss function instead of cross-entropy. Any other physical parameter can be used for optimization
- Current result AUC = 0.85 is comparable with standard NN algorithm. Further improvement is expected after optimization of hyperparameters

Future Plans

- Implement automatic optimization of hyperparameters
- Implement signal significance and separation power as optimization function

Thank you for your attention

Contact: kiseevavi@jinr.ru

Steps to Improve Neural Network Robustness and Effectiveness

- 1. Develop a Custom Library (without using of Keras, TensorFlow etc) (done)
 - Create a specialized library to build neural network structures from the ground up.
- 1. Create a New Training Algorithm (currently in progress)
 - Design an algorithm for training neural networks.
- 1. Make the Algorithm Optimization-Ready (currently in progress)
 - Ensure the algorithm easily supports optimizing neural network parameters/hyperparameters and allows for any user-defined optimization function.
- 1. Start with Parameter Optimization
 - Begin by optimizing the neural network parameters (currently in progress).
- 1. Expand to Hyperparameter Optimization
 - Once performance is good, include the optimization of hyperparameters.

Kinematics of signal and backgrounds

The kinematics of signal and background processes are very close

(a) t-channel of the signal tH process

(b) s-channel of the signal tH process

(c) Higgs boson production channel with top quark, where the Higgs boson interacts with the W boson

(d) leading ttb production channel

24 Variables Most Sensitive to tHbq_{SM}

Linear correlation coefficients in %														100												
InvMass_3Jets	-2	5	44	14	-12	-26	-14	24	41	20	23	31	47	44	-30	18	4	20	14	15	32	3	11	100		100
W_T_m	3	2	10		-1	-6	-2	12	17	-14	16	13	3	9	11	13	-3	-8	-11	4	-3	6	100	11		~~
jet_b2_e		7	3	14	-10	-9	-11	14	30	-1	14	17	8	-4	12	15	-4		-15	-3	-3	100	6	3		80
FWD_m	-2	1	36	-9	-6	-17	-7	4	1	-6	3	3	21	69		4	6	-10	-5	7	100	-3	-3	32		
Jentral_non_b_maxpt_pt	_	•	57	-14	21	21	26	<u> </u>	2	-3	(56	ð	3	-12	9	32	3	100	100	7	-3	4	15		60
RapGap_closestb	-1	3	•	-19	-/	10	-8	-1	-15	41	-3	-0	25	-9	-29	-3	3	100	100	4	-0	-15	-11	14		
	-	3	- 1		-12	2 4 4	-12	2	2	42	2	- 1	4/	-14	-39	4	100		03	3	-10	л	-0	20		40
top m	2	-4	23		12 Q	7		22	-0	-3	59	17	18	о Л	-10 _9	100	100	2 A		0	о Л	-4	12	4		
fwm1	-3	-6	-12	-36	-14	-17	-15	_9	-93	-40	-7	-20	-25	5	100	-8	-16	-29	-29	-12		12	11	-30		20
FWD pt	-3	2	44	-11	-15	-97	-15	Δ	23	-8	Δ	1	27	100	5	4	3	-14	-9	3	69	-4	q	44		20
mass H FWD	-2	13	35	-3	-11	-8	-12	34	25	q	27	18	100	27	-25	18	ž	47	55	8	21	8	3	47		
mass H CenJet		6	52	13	11	4	10	45	52	6	35	100	18	1	-20	17	21	-1	-6	56	3	17	13	31	-	0
 min chi		12	35	7	8	4	7	71	51	-2	100	35	27	4	-7	58		2	-3	7	3	14	16	23		
delta_eta_FWD_t	-1		-9	35	-20	-7	-20		16	100	-2	6	9	-8	-40	-4	-5	42	47	-3	-6	-1	-14	20		-20
mass_tH		13	36	50		-9	-2	50	100	16	51	52	25	2	-23	42	-3	2	-15	5	1	30	17	41		
higgs_m		18	40	3	12	7	11	100	50		71	45	34	4	-9	22		2	-1	7	4	14	12	24		-40
sphresity_allobjects	4	7	28	-23	97	67	100	11	-2	-20	7	10	-12	-15	-15	9	11	-12	-8	26	-7	-11	-2	-14		-10
sphresity_Inu4maxjet	2	7	17	-21	65	100	67	7	-9	-7	4	4	-8	-27	-17	7	11	5	10	21	-17	-9	-6	-26		<u> </u>
sphresity_alljets	4	7	31	-22	100	65	97	12		-20	8	11	-11	-15	-14	8	12	-12	-7	27	-6	-10	-1	-12		-60
delta_eta_tH	-1	-1	-23	100	-22	-21	-23	3	50	35	7	13	-3	-11	-36	9	-9	7	-19	-14	-9	14		14		
HT_alljets		20	100	-23	31	17	28	40	36	-9	35	52	35	44	-12	31	29	-1	6	57	36	3	10	44		-80
N_b	100	100	20	-1	7	7	7	18	13		12	6	13	2	-6	16	-4	3	3		1	7	2	5		
lead_lep_charge	100			-1	4	2	4			-1			-2	-3	-3	2			-1		-2		3	-2		-100
	lead	NN	5 HT	del	ta Spi	Tre Sph	Ire Sph	hig	as ma	ss del	ta min	ma	ss mas	SS FN	10 fwn	top	De	tap Rak	Ra	Ce,	THEFU	D jet	bow	T Invi	Na	
		ieb	chara	~~"Jet	s ⁻ eta	th	allipt	Inuas	alloh	[H	eta	FWD	- H	Cent	FWD	.,	~	-q	WP-	maxin	closon	onh	°¢_0`	·_/ŋ	Jess 3Je	to
			-190	9			1018		naxjet	⁹ Cts		, U	t	.,06						-npt	6 .68	16-0_	maxpt		-1	5
																								_Pt		

Back-up. ROC-curve integral

The network efficiency curve is the dependence of the cut signal on the number of background events captured.

0.3

0.25

MadGraph

s= 13 TeV, 140 fb⁻¹

Separation Power = 42.94 %

Backgrounds