

Status of Forward Hadron Calorimeter at MPD/NICA

A. Strizhak, A. Baranov

Institute for Nuclear Research RAS, Moscow

Outline

Tasks and features of FHCal in MPD experiment
 Structure of FHCal modules
 Integration of FHCal in MPD
 Test bench at INR RAS
 Energy calibration with horizontal muons

> Feasibility of calibration with muons in whole solid angle

Goals of MPD/NICA project

Position and design of FHCal

MPD structure

transversal cut of FHCal arm

- FHCal consists of two arms of 44 modules; ٠
- Each arm is positioned at 3,2 m from collision point; ٠
- Transversal size of FHCal ~1.1x1.1 m²; ٠
- Beam hole in the centre ٠

• **Expected energy resolution**
$$\frac{\sigma_E}{E} = \frac{57\%}{\sqrt{E[GeV]}}$$

FHCal features

- Since FHCal has a beam hole, most of the <u>bound spectators</u> leak in this hole.
- Mainly, <u>free spectators</u> (protons and neutrons) deposit energy in FHCal.

Task 1: Reconstruction of the event plane with spectators

Detection of all types of the spectators (protons, neutrons) for both colliding nuclei would ensure the outstanding $\approx 20^{\circ}$ angular resolution of the event plane!

Task 2: Solving ambiguity in centrality determination

- For hermetical calorimeter the energy deposition of spectators has monotonic dependence on impact parameter.
- It is not true in real situation.

Energy deposition: E_{dep} Maximum energy: E_{Max} – height of cone fit

- Heavy fragments escape into beam hole
- Ambiguity in centrality reconstruction for central and peripheral events

(*x*, *y*) coordinates of module center

Design of FHCal module

FHCal modules at MPD hall

In Nov'23 90 modules were delivered form INR to MPD hall

Assembling of FHCal modules in basket at floor:

April'24

FHCal installation into magnet pole (Sept'24)

FHCal support frame in magnet pole

Outer view

FHCal arm already moved into magnet pole!

Inner (front) view

Step 3: Press FHCal parts together

Drawing

Two FHCal halves pressed together

Front End Electronics installed in modules

FHCal parts should be pressed together! To be done soon!

Test bench at INR RAS

Test bench of 18 modules

Front End Electronics (FEE)

Parameters of Hamamatsu MPPC S14160-1310PS

- + high dynamic range (90000 pixels)
- + short recovery time (~10 ns)
- + high count rate
- low photon detection efficiency (< 18%)

12

S14160-1315PS

New generation SiPMs allow for more advanced calibration method

High performance of new SiPMs allows to observe muon peaks above noise

Calibration of FHCal modules with muon beams

- ✤ A test bench of modules was studied in CERN at T9/T10 beamlines
- T9/T10 beam lines provide pion and proton beams in range of 2-6 GeV
- ★ $\pi → \mu \nu_{\mu}$ decay in beam line allows using muons for calibration of modules sections
- Energy depositions of muons (unlike hadrons) in sections are close for all sections
- Correlation of total energy deposition of muons inside first and second halves of modules allows to reliably separate muons from hadrons
- According to MC simulation energy deposition of muon in single section to be about ~5 MeV

Correlation of energy depositions in first and second halves of modules

Energy calibration with horizontal cosmic muons

Light yield in module sections for horizontal cosmic muons

Different muon tracks that are were considered. For example
when two neighbor sections signals

- three neighbor sections signals
- ✤ all sections signals

are compared

Main con: low statistics horizontal muons! Data acquisition takes 1 week.

All muons track selection and charge on pass length correction

✤ 5 MeV peaks correspond to nearly the same charge on both spectra

Spectrum for the new calibration technique contains ~50 times more events than horizontal muons spectrum

Application of new technique for strictly horizontal muons does not change the 5 MeV peak position
16

Angular (polar and azimuthal) distribution of muons

Summary

- FHCal is one of the basic detectors of MPD aimed at the reconstruction of heavy ion collision geometry.
- > One arm of FHCal has already been constructed and integrated in MPD.
- Test bench of 18 modules at INR RAS is used for the FHCal electronics development and energy calibration.
- > Different approaches in cosmic muon calibration are tested.
- Calibration with horizontal muons provides a clear detector response with 5 MeV energy deposition in each longitudinal section of FHCal modules. But this method requires one week of data taking.
- Whole solid angle technique is 50 times faster but requires the correction of energy depositions to muon track lengths in FHCal modules.

Thank you for your attention

Task 2: Ambiguity in centrality determination

- For hermetical calorimeter the energy deposition of spectators has monotonic dependence on impact parameter.
- It is not true in real situation.

0.8 Fit height (a.u.)

Energy distribution in FHCal

modules

0.2

0.3

0.4

0.5

0.6

0.7

Absolute calibration

21

60000

40000 50000 600 LED_Charge [ADC_channels]

30000

Track selection and charge on pass length correction

At first, a coordinate of charge center needs to be found:

$$\bar{R} = \frac{\sum_{n=1}^{N} E[n] \, \vec{r}[n]}{\sum_{n=1}^{N} E[n]}$$

Then distance between centers of fired cells and possible muon track needs to be minimized in order to find right muon track:

$$\sum_{n=1}^{N} \left(\hat{\vec{r}}^2[n] - \left(\frac{(\hat{\vec{r}}[n], \vec{a})}{|\vec{a}|} \right)^2 \right) \to min$$

Finally, corrected charge spectrum (as if all muons go along the axis of FHCal module) can be found

Muon track selection: only adjacent sections tracks are chosen

Real charge spectrum of muon and corrected charge spectrum

²² 9/1

Comparison of both methods for all sections in one module

Same results for all module sections

Statistics for horizontal muons vs all muons

Presented results are for 5 days of data acquisition

- ✤ 5 MeV peaks correspond to nearly the same charge on both spectra
- Spectrum for the new calibration technique contains ~50 times more events than horizontal muons spectrum
- Application of new technique for strictly horizontal muons does not change the 5 MeV peak position

Comparison of both methods for all sections in one module

Results are similar for both methods