Data Processing at the LHC. Corrections & Systematic Effects

V. Shalaev (vladislav.shalaev@cern.ch)

Dubna, 1 November 2024

28th International Scientific Conference of Young Scientists and Specialists (AYSS-2024)

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Data Certification Simulation

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Data Certification Simulation

Event selection

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Data Certification Simulation

Event selection

Data and modeling corrections

Based on CMS-SMP-23-007 and CMS-AN-20-220

6

Event Collection

Data Certification Simulation

Event selection

Data and modeling corrections

Measurement

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Data Certification Simulation

Event selection

Data and modeling corrections

Measurement

Uncertainty estimation

Based on CMS-SMP-23-007 and CMS-AN-20-220

Event Collection

Data Certification Simulation

Event selection

Data and modeling corrections

Measurement

Uncertainty estimation

Event Collection

Data Certification S

Simulation

Event selection

Data and modeling corrections

Measurement

Uncertainty estimation

Based on CMS-SMP-23-007 and CMS-AN-20-220

- Pileup
- Misalignment
- Efficiency
- Prefiring
- Integral
- Luminosity
- PDF and α_s
- Simulation Cross section
- QCD Scale Factors

9

Pileup

- <u>Origin</u>: $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$
- Bunch crossing (BX) every **25 ns**
- ~ **60-70** pp-collisions per BX
- ~ 60 charged particles per pp-collision
 - ~1500-2000 charged particles per BX or 10¹¹ per second

11

Pileup

<u>Origin</u>: L_{inst} ~10³⁴ cm⁻²s⁻¹
Bunch crossing (BX) every 25 ns
~60-70 pp-collisions per BX
~60 charged particles per pp-collision
~1500-2000 charged particles per BX or 10¹¹ per second

<u>Correction</u>: Average pileup is reweighted in MC in according with Data

Pileup

<u>Origin</u>: L_{inst} ~10³⁴ cm⁻²s⁻¹
Bunch crossing (BX) every 25 ns
~60-70 pp-collisions per BX
~60 charged particles per pp-collision
~1500-2000 charged particles per BX or 10¹¹ per second

<u>Uncertainty</u>: Variation of Minimum biased events XS

Pileup

<u>Origin</u>: $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$ • Bunch crossing (BX) every **25 ns**

- ~60-70 pp-collisions per BX
- ~ 60 charged particles per pp-collision
 ~1500-2000 charged particles per BX or 10¹¹ per second

<u>Correction</u>: Average pileup is reweighted in MC in according with Data

<u>Uncertainty</u>: Variation of Minimum biased events XS

13

<u>Origin</u>: Different efficiency values in the real experiment and simulation

 $\epsilon^{\mu}_{Tot} = \epsilon^{\mu}_{Id} \times \epsilon^{\mu}_{Iso|Id} \times \epsilon^{\mu}_{Trg|Iso}$

Efficiency is probability:

<u>Origin</u>: Different efficiency values in the real experiment and simulation

 $\epsilon^{\mu}_{Tot} = \epsilon^{\mu}_{Id} \times \epsilon^{\mu}_{Iso|Id} \times \epsilon^{\mu}_{Trg|Iso}$

Efficiency is probability:

<u>Correction</u>: Tag & Probe, event reweighting $w_{Id,Iso,Trg}^{\mu^+\mu^-} = \frac{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}}{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}}$

Origin: Different efficiency values in the real experiment and simulation

 $\epsilon^{\mu}_{Tot} = \epsilon^{\mu}_{Id} \times \epsilon^{\mu}_{Iso|Id} \times \epsilon^{\mu}_{Trg|Iso}$

Efficiency is probability:

<u>Correction:</u> Tag & Probe, event reweighting $w_{Id,Iso,Trg}^{\mu^+\mu^-} = \frac{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}(Data)}{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}(MC)}$

 $M \sim 91 \text{ GeV}/c^2$ *p_T*~ 40-50 GeV/*c*

p_T∼ 40-50 GeV/*c*

 p_T , η dependence!

 $M \sim 91 \text{ GeV}/c^2$

Origin: Different efficiency values in the real experiment and simulation

 $\epsilon^{\mu}_{Tot} = \epsilon^{\mu}_{Id} \times \epsilon^{\mu}_{Iso|Id} \times \epsilon^{\mu}_{Trg|Iso}$

Efficiency is probability:

<u>Correction:</u> Tag & Probe, event reweighting $w_{Id,Iso,Trg}^{\mu^+\mu^-} = \frac{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}(Data)}{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}(MC)}$

Tag , µ_

p_T∼ 40-50 GeV/*c*

 p_T , η dependence!

/p_T~ 40-50 GeV/c

 $M \sim 91 \text{ GeV}/c^2$

18

Origin: Different efficiency values in the real experiment and simulation

Efficiency is probability:

<u>Correction:</u> Tag & Probe, event reweighting $w_{Id,Iso,Trg}^{\mu^+\mu^-} = \frac{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}}{\epsilon_{Id,Iso,Trg}^{\mu^+\mu^-}}$

Tag , u

 $p_T \sim 40-50 \text{ GeV}/c$

 p_T , η dependence!

p_T~ 40-50 GeV/*c*

Uncertainty: Variation each of weights. Sum in quadrature

 $\epsilon^{\mu}_{Tot} = \epsilon^{\mu}_{Id} \times \epsilon^{\mu}_{Iso|Id} \times \epsilon^{\mu}_{Trg|Iso}$

	N
$\Delta =$	$\sum \delta_{\mu}^2$
1	$\left \frac{\sum_{k}^{\kappa}}{k} \right ^{\kappa}$

- A_i^k Variated value of A_i coefficients results from variation of uncertainty source
- A_i^0 central value of A_i coefficient

Most significant type of uncertainty!

Misalignment

Origin: Non-accuracy of detector model

Misalignment Origin: Non-accuracy of detector model

<u>Correction:</u> Tag & Probe with Rochester correction (Eur. Phys. J. C 2012. V. 72, P.)

Misalignment **Origin:** Non-accuracy of detector model rged Hadron (e.g. Pion) Hadron (e.g. Neutron) 0 Electromagne Calorimeter Hadron Superconducting Calorimeter Solenoid Iron return voke intersperse Transverse slice with Muon chambers through CMS

<u>Correction:</u> Tag & Probe with Rochester correction (Eur. Phys. J. C 2012. V. 72, P.)

Misalignment **Origin:** Non-accuracy of detector model Hadron (e.g. Pion) dron (e.g. Neutron) 0 lectromagne Calorimeter Events Hadron Calorimeter Solenoid on return voke interspers Transverse slice with Muon chambers through CMS

<u>Correction:</u> Tag & Probe with Rochester correction (Eur. Phys. J. C 2012. V. 72, P.) <u>Uncertainty:</u> 100 "toys" and RMS calculation

Conclusions

- Effects of difference between data and simulation are constantly being studied and could be successfully corrected.
 - In analysis SMP-23-007 this steps are successfully done. Good agreement between data and MC is observed

<u>Origin:</u> $L_{inst} \sim 10^{34} \ cm^{-2} \ s^{-1}$ and L₁ Trigger time desynchronization

<u>Origin:</u> $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$ and L₁ Trigger time desynchronization

<u>Origin:</u> $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$ and L₁ Trigger time desynchronization

<u>Origin:</u> $L_{inst} \sim 10^{34} \ cm^{-2} s^{-1}$ and L₁ Trigger time desynchronization

