Centrality determination methods in heavy-ion collisions at the BM@N experiment

Idrisov Dim, Fedor Guber, Nikolay Karpushkin, Parfenov Peter

INR RAS, Moscow, Russia

28th International Scientific Conference of Young Scientists and Specialists (AYSS-2024)

29/10/24

Centrality

- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities (multiplicity or energy of the spectators)
- **This allows comparison of the future BM@N results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models**

$$
c(b) = \frac{\int_0^b \frac{d\sigma}{db'}db'}{\int_0^\infty \frac{d\sigma}{db'}db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'}db
$$

- A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)
- to suppress self-correlation biases, it is necessary to use spectators fragments for centrality estimation

Centrality determination in the FIX-target experiments

Reference multiplicity distributions (black markers) in the kinematic acceptance within $-0.5 < y < 0$ and $0.4 < pT < 2.0$ GeV/c, GM (red histogram), and single and pile-up contributions from unfolding. do/dN [mb] **HADES** Data min. bias Au+Au 1.23 AGeV Data central (PT3) GlauberMC \times NBD(μ , k) \times $\varepsilon(\alpha)$ μ =0.24, k =20.34, α =-1.10e-07 10^2 20-30% 10-20% 40-50% 30-40% -60% $0 - 10%$ 10 10^{-1} $10⁷$ 20 60 80 40 100 Ω $N_{\rm tracks}$

The cross section as a function of Ntracks for minimum bias (blue symbols) and central (PT3 trigger, green symbols) data in comparison with a fit using the Glauber MC model (red histogram).

<https://arxiv.org/abs/2112.00240>

Centrality determination in BM@N

Relation between impact parameter and track multiplicity

The Bayesian inversion method (Γ-fit): DCM-QSM-SMM based

. The fluctuation kernel for multiplicity at fixed impact

parameter can be describe by Gamma distr.:

The Bayesian inversion method (F-fit):
\nuctuation kernel for multiplicity at fixed impact
\neter can be describe by Gamma distr.:
\n
$$
P(M \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} M^{k(c_b)-1} e^{-M/\theta}
$$
\n
$$
c_b = \int_0^b P(b')db' - \text{centrality based on} \text{impact parameter}
$$
\n
$$
\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta} \qquad \langle M' (c \text{div})
$$
\n
$$
D(M)
$$
\n
$$
D(M) - \text{average and variance of Multiplicity} \qquad \text{car}
$$
\n
$$
\text{exf}
$$

$$
\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta} \qquad \langle M'(\mathcal{C}_b) \rangle \qquad -
$$

 $\langle M \rangle$, $D(M)$ – average and variance of Multiplicty

$$
P(M) = \int_{0}^{1} P(M \mid c_{b})dc_{b}
$$

$$
CM-QSM-SMM based
$$
\n
$$
P(M) = \int_{0}^{1} P(M \mid c_{b})dc_{b}
$$
\n
$$
\langle M \rangle = m_{1} \cdot \langle M' \rangle
$$
\n
$$
D(M) = m_{1}^{2} \cdot D(M') + m_{1} \cdot m_{2} \langle M' \rangle
$$

 $\langle M'(\overline{c}_b^-)\rangle$ average value and var. of energy/mult. $(M\,{}^{\prime}(c_{_b}))\quad$ from the rec. model data $D(M$ ' $(c_{_b}))$ from the re

• can be approximated by polynomials and exponential polynomial

Probabilistic model of pileup

 $M_{pu}(b_1, b_2)$ = $M_1(b_1)$ + $M_2(b_2)$ - pileup as two independent events, with impact parameters b_1 , b_2

 $M_{pu}(b_1, b_2)$ = $\langle M_1(b_1) \rangle + \langle M_2(b_2) \rangle$, $D(M_{pu}(b_1, b_2)) = D(M_1(b_1)) + D(M_2(b_2))$

$$
P_{pu}(M_{pu} | b_1, b_2) = \frac{1}{\Gamma(k_p) \theta_p^2} M_{pu}^{k_p - 1} e^{-M_{pu}/\theta_p}
$$

 \mathcal{L}_{p-1} _p \mathcal{L}_{p} ^{- M_{pu}/θ_p} . The fluctuation of multiplicity can be describe by Gamma distribution

$$
\theta_p = \frac{D(M(b_1, b_2))}{\langle M(b_1, b_2) \rangle}, \quad k_p = \frac{\langle M(b_1, b_2) \rangle}{\theta_p}
$$
 . The parameter

 $=\frac{\sqrt{M}\left(\frac{U_{1},U_{2}}{U_{1}},\frac{U_{2}}{U_{2}}\right)}{M}$. The parameters of Gamma distribution

 $P_{_{\mu\nu}}(M_{_{\mu\nu}})$ – the probability distribution of pileup can be calculated as

$$
P_{pu}(M_{pu}) = \int_{0}^{b_{\text{max}}} \int_{0}^{b_{\text{max}}} P(M_{pu} | b_1, b_2) P(b_1) P(b_2) db_1 db_2 = \int_{0}^{c_{b1}c_{b2}} \int_{0}^{c_{b2}} P_{pu}(M_{pu} | c_{b1}, c_{b2}) dc_{b1} dc_{b2}
$$

Corrections for efficiency and pileup

• **Correction for efficiency of normalized multiplicity distribution P(M)**

Corrections for efficiency and pileup
\nction for efficiency of normalized multiplicity distribution P(M)
\n
$$
P(M) = \frac{dN}{dM} / N_{ideal}^{ev} \left(\frac{N_{raw}^{ev}}{N_{ideal}^{ev}} \right) \frac{1}{N_{raw}^{ev}} \frac{dN_r}{dM} = \frac{1}{K} \cdot Norm. History
$$
\n
$$
Eff = \frac{N_{raw}^{ev}}{N_{ideal}^{ev}} = \frac{1}{K}
$$
\nintercept integration in the original efficiency
\n
$$
\text{Fit function for multiplicity distribution P(M)}
$$
\n
$$
M = K \cdot P_{total}(M), \quad P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)
$$
\n
$$
E(M) = E(M) \cdot \text{Fit function, corrected for efficiency and nilsum}
$$

• **Fit function for multiplicity distribution P(M)**

$$
F(M) = K \cdot P_{total}(M), P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)
$$

- fit parameters, *F* $P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)$
F (M) – fit function, corrected for efficiency and pileup $m_{\text{\tiny 1}}^{} , m_{\text{\tiny 2}}^{} , K , N_{\text{\tiny p}}^{}$ - fit parameters,

Fit results

Vertex Cuts: CCT2, $N_{vtxTr} > 1, |V_{x,y} - (0.3,0.14)| < 1$ cm, $|V_{z} - 0.07| < 0.2$ cm Good agreement with fit Track selection: Nhit>4, η<3, Pt>0.05 GeV/c

The Bayesian inversion method (Γ-fit): 2D fit

. The fluctuation kernel for energy and multiplicity at fixed

impact parameter can be describe by 2D Gamma distr.:

$$
P(E, M \mid c_{b}) = G_{2D}(E, M, \langle E \rangle, \langle M \rangle, D(E), D(M), R)
$$

– centrality based on \int_0^{∞} impact parameter $(b^{\cdot})db^{\cdot}$ – centi *b* $b^c{}_b = \int P(b')db'$ - centrality based on **The Bayesian i**

The fluctuation kernel for energy and multiplic

mpact parameter can be describe by 2D Gamm
 $E, M \mid c_b$ = $G_{2D}(E, M, \langle E \rangle, \langle M \rangle, D(E), L$
 $c_b = \int_0^b P(b')db'$ -- centrality based or
 E , $D(E)$ -- average value **Example 3**

ergy and multiplic

cribe by 2D Gamn
 $\langle \rangle, \langle M \rangle, D(E), I$

centrality based of

npact parameter

and variance of example and variance of r

tion coefficient
 $\frac{E'D(M')}{(E)D(M)}$ **The Bayesian inversic**
 CETTE: The fluctuation kernel for energy and multiplicity at fixed

impact parameter can be describe by 2D Gamma distr.:
 $P(E,M | c_b) = G_{2D}(E,M,\langle E \rangle, \langle M \rangle, D(E), D(M), R)$
 $c_b = \int_0^b P(b')db'$ — centrality bas *D E D M*

 $\langle E \rangle$, $D(E)$ – average value and variance of energy

 $\langle M \rangle$, $D(M)$ – average value and variance of mult.

– Pirson correlation coefficient

 $E'(c_{\mu})\rangle$ average value and var. of energy/mult. $(E'(c_{_b}))$ from the rec. model data $\langle E\prime(c_{_b})\rangle$ $D(E^{\, \prime}(c_{_b}))$ from the r

$$
\langle E \rangle = \varepsilon_1 \langle E'(c_b) \rangle + \varepsilon_0, \quad D(E) = \varepsilon_2 D(E'(c_b))
$$

$$
\langle M \rangle = m_1 \langle M'(c_b) \rangle, \quad D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle
$$

 $\langle E^{\prime}(c_{_{b}}) \rangle$, $\langle D(E^{\prime}(c_{_{b}})) \rangle$ - can be approximated by polynomials

Example 1 The Bayesian inversion method (F-fit): 2D fit
\nThe fluctuation Kernel for energy and multiplicity at fixed
\nimpact parameter can be describe by 2D Gamma distr.:
\n
$$
P(E,M | c_b) = G_{2D}(E,M,\langle E \rangle, \langle M \rangle, D(E), D(M), R)
$$

\n $C_b = \int_0^b P(b')db'$ - centrality based on
\n $E(\langle E, \rangle)$ (where $E(\langle E, \rangle) + E_b$, $D(E) = \varepsilon_1 D(E(c_b))$
\n $C_b = \int_0^b P(b')db'$ - centrality based on
\n $\langle E \rangle$, $D(E)$ - average value and variance of energy
\n $\langle E' \rangle$, $D(E'(\langle E, \rangle))$, $D(E'(\langle E, \rangle))$ - can be approximated by polynomials
\n $\langle M \rangle$, $D(M)$ - average value and variance of the
\n $\langle E' \rangle$, $D(E'(\langle E, \rangle))$ - $\sum_{j=1}^{12} a_j c_b^j$, $D(E' \langle E, \rangle) = \sum_{j=1}^{19} b_j c_b^j$
\n $R(E,M)$ - Pirson correlation coefficient
\n $\langle E' \langle E, \rangle \rangle = \sum_{j=1}^{12} a_j c_b^j$, $D(M' \langle E, \rangle) = \sum_{j=1}^{19} b_j c_b^j$
\n $R(E,M) = \varepsilon_1 \cdot m_1 \cdot R(E'M) \sqrt{\frac{D(E')D(M)}{D(E)D(M)}}$ - fit parameters

2D Gamma distribution

It is possible to find such a rotation angle of the system that

Then the two-dimensional distribution in the new coordinate system will be

2D Gamma distribution
to find such a rotation angle of the system that
$$
cov(x, y) = 0
$$

to-dimensional distribution in the new coordinate system will be

$$
G_{2D}(E_{FH}, M_{ch}, \langle E \rangle, \langle M \rangle, D(E), D(M), R) = G(x, \theta_x, k_x) \cdot G(y, \theta_y, k_y)
$$

$$
G(x, \theta_x, k_x) \cdot G(y, \theta_y, k_y) = \frac{(x)^{k_x(c_b)-1} e^{-x/\theta_x}}{\Gamma(k_x(c_b))\theta_x^2} \cdot \frac{(y)^{k_y(c_b)-1} e^{-y/\theta_y}}{\Gamma(k_y(c_b))\theta_y^2}
$$

$$
\theta_x = \frac{D(x)}{\langle x \rangle}, \quad k_x = \frac{\langle x \rangle^2}{D(x)}, \quad \theta_y = \frac{D(y)}{\langle y \rangle}, \quad k_y = \frac{\langle y \rangle^2}{D(y)}
$$
\n
$$
\alpha = \arctan\left(\frac{2\sqrt{D(E)D(M)}R(E,M)}{D(E) - D(M)}\right)
$$

The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution

EFH

y

2D fit results

Good agreement between fit and data.

Energy distribution

Good agreement between fit and data.

Clusterization with k means for centrality classes

the bivariate fit distribution was divided into 10 centrality classes

MC-Glauber based centrality framework

Comparison with MC-Glauber fit

There is agreement within 5%. 15

Summary and outlook

- A new approach for efficiency and pileup correction was developed
- The Bayesian inversion method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- A new approach for centrality determination with energy of spectators and multiplicity of charged particles was proposed
- The proposed method was applied to the data from BM@N experiment
	- results are consistent with the conventional MC-Glauber based approach
- It is planned to create a two-dimensional method based on a signal from a hodoscope and energy from the FHCal

Thank you for your attention!

2D Gamma distribution

It is possible to find such a rotation angle of the system that

Then the two-dimensional distribution in the new coordinate system will be

mean value and variance in the new coordinate system

$$
\langle x \rangle = \cos(\alpha) \langle E \rangle + \sin(\alpha) \langle M \rangle \qquad D(x) = D(E) \cos(\alpha)^2 + R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \sin(\alpha)^2
$$

$$
\langle y \rangle = -\sin(\alpha) \langle E \rangle + \cos(\alpha) \langle M \rangle \qquad D(y) = D(E) \sin(\alpha)^2 - R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \cos(\alpha)^2
$$

18

Dependence of the variance of multiplicity and energy on centrality

Good fit quality and the set of the

Dependence of the average value of multiplicity and energy on centrality

Energy distr. fit

21

Mult distr. fit

22

Impact parameter distribution for centrality classes

The fluctuation of energy and multiplicity at fixed impact

The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution

 \cdot Find probability of *b* for fixed range of E and M using Bayes' theorem:

$$
P(b | E_1 < E < E_2, M_1 < M < M_2) = P(b) \frac{\int_{E_1 M_1}^{E_2 M_2} P(E, M | c_b) dM dE}{\int_{E_1 M_1}^{S} \int_{0}^{M_2} P(E, M | c_b) dM dE d c_b}
$$

Event cleaning

Event cleaning

The most of the background has been suppressed after cuts for Erat >0.29 and vertex position (V_x-0.3)²+(V_y-0.14)²<1 cm

Event cleaning in HADES

Segmented gold target:

- 197 Au material
- 15 discs of $Ø = 2.2$ mm mounted on kapton strips

 \vec{z}

 $200 -$

 150

 100

50

- \triangle z = 3.6 mm
- 2.0% interaction prob.

Kindler et al.. NIM A 655 (2011) 95

beam direction

30/11/2021 FANI-2021 | R. Holzmann (GSI) for the HADES collaboration

http://indico.oris.mephi.ru/event/221/session/1/contribution/1/material/slides/0.pdf ²⁷

 $\overline{3}$

NA61/SHINE experimental setup

Data samples:

- Pb-Pb ω p_{beam} = 13A GeV/c
- data from 2016 physics run
- DCM-QGSM-SMM x Geant4 M.Baznat et al. PPNL 17 (2020) 3, 303

Subsystems

- Multiplicity: TPCs
- Spectators energy: PSD

Dependence of the average value and variance of energy on centrality

The average value and dispersion of energy from the DCM-QGSM-SMM model are well described by polynomials

Reconstruction of *b*

- Normalized energy distribution P(E) 1 and 1 and 1 and 1 and 1 and 1 $\overline{0}$ $P(E) = \int P(E | c_b) d c_b$
- Find probability of *b* for fixed range of E using Bayes' theorem:

$$
P(b \mid E_1 < E < E_2) = P(b) \frac{\int_{E_1}^{E_2} P(b \mid E) dE}{\int_{E_1}^{E_2} P(E) dE}
$$

• **The Bayesian inversion method consists of 2 steps:** –Fit normalized energy distribution with P(E) –Construct P(*b*|E) using Bayes' theorem with parameters from the fit

Good agreement between fit and data in wide energy range

Fit results for NA61

The method reproduces the energy distribution well. The difference in the peripheral region is due to the trigger efficiency

Comparison with MC-Glauber fit

Good agreement between fit and data. There is agreement within 5%.

Reconstruction of *b*

• Normalized multiplicity distribution $P(N_{ch})$

$$
P(N_{ch}) = \int_0^1 P(N_{ch}|c_b)dc_b
$$

• Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$
P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}
$$

- **The Bayesian inversion method consists of 2 steps:**
- –Fit normalized multiplicity distribution with $P(N_{ch})$
- –Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

