Centrality determination methods in heavy-ion collisions at the BM@N experiment

Idrisov Dim, Fedor Guber, Nikolay Karpushkin, Parfenov Peter

INR RAS, Moscow, Russia

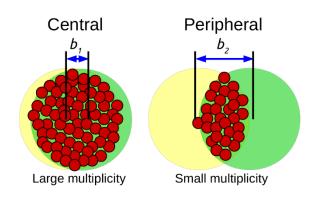
28th International Scientific Conference of Young Scientists and Specialists (AYSS-2024)

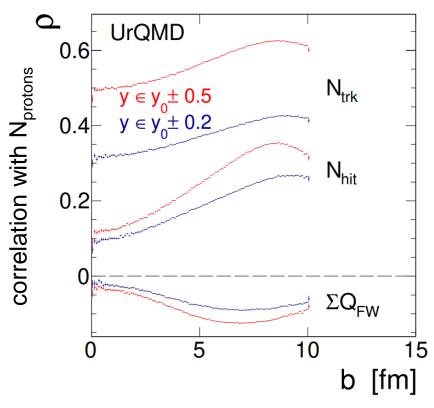
29/10/24

Centrality

- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities (multiplicity or energy of the spectators)
- This allows comparison of the future BM@N results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

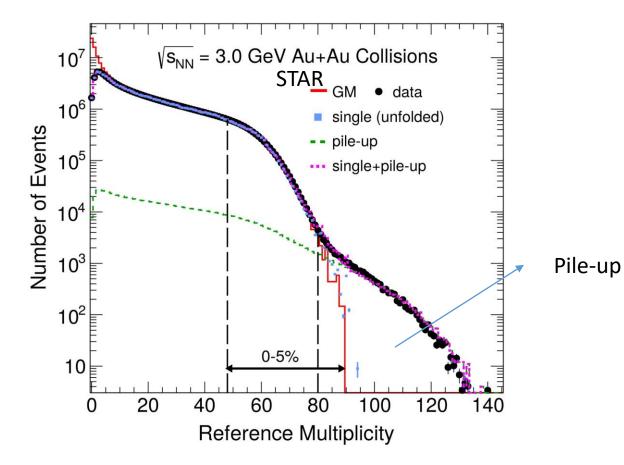
$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db'$$



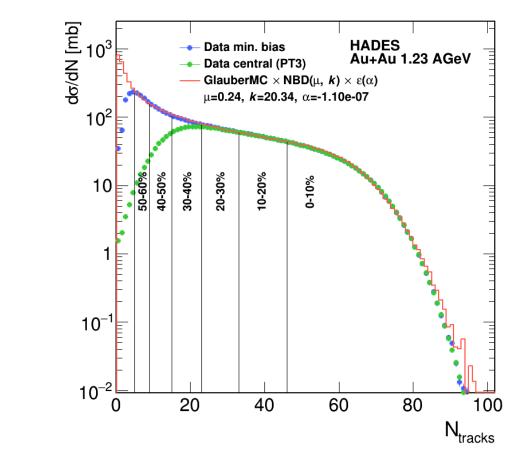


- A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)
- to suppress self-correlation biases, it is necessary to use spectators fragments for centrality estimation

Centrality determination in the FIX-target experiments



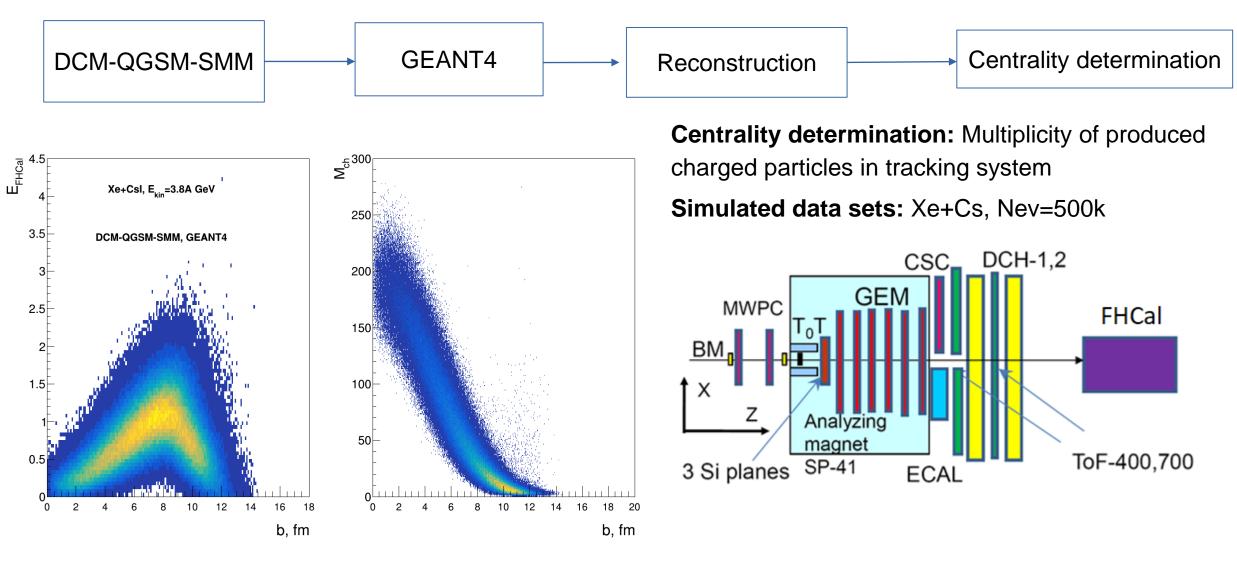
Reference multiplicity distributions (black markers) in the kinematic acceptance within -0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c, GM (red histogram), and single and pile-up contributions from unfolding.



The cross section as a function of Ntracks for minimum bias (blue symbols) and central (PT3 trigger, green symbols) data in comparison with a fit using the Glauber MC model (red histogram).

https://arxiv.org/abs/2112.00240

Centrality determination in BM@N



Relation between impact parameter and track multiplicity

The Bayesian inversion method (Γ-fit): DCM-QSM-SMM based

• The fluctuation kernel for multiplicity at fixed impact

parameter can be describe by Gamma distr.:

$$P(M \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} M^{k(c_b)-1} e^{-M/\theta}$$
$$c_b = \int_0^b P(b')db' - \text{centrality based on}$$
impact parameter

$$\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta}$$

 $\langle M \rangle$, D(M) – average and variance of Multiplicty

$$P(M) = \int_0^1 P(M \mid c_b) dc_b$$

$$\langle M \rangle = m_1 \cdot \langle M' \rangle$$

 $D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$

 $\langle M'(c_b) \rangle$ – average value and var. of energy/mult. $D(M'(c_b))$ from the rec. model data

 can be approximated by polynomials and exponential polynomial

Probabilistic model of pileup

 $M_{pu}(b_1, b_2) = M_1(b_1) + M_2(b_2)$ - pileup as two independent events, with impact parameters b_1, b_2

 $\langle M_{pu}(b_1, b_2) \rangle = \langle M_1(b_1) \rangle + \langle M_2(b_2) \rangle, \quad D(M_{pu}(b_1, b_2)) = D(M_1(b_1)) + D(M_2(b_2))$

$$P_{pu}(M_{pu} | b_1, b_2) = \frac{1}{\Gamma(k_p) \theta_p^2} M_{pu}^{k_p - 1} e^{-M_{pu}/\theta_p}$$

The fluctuation of multiplicity can be describe
 by Gamma distribution

$$\theta_{p} = \frac{D(M(b_{1}, b_{2}))}{\langle M(b_{1}, b_{2}) \rangle}, \quad k_{p} = \frac{\langle M(b_{1}, b_{2}) \rangle}{\theta_{p}}$$

• The parameters of Gamma distribution

 $P_{pu}(M_{pu})$ – the probability distribution of pileup can be calculated as

$$P_{pu}(M_{pu}) = \int_{0}^{b_{\max}} \int_{0}^{b_{\max}} P(M_{pu} | b_1, b_2) P(b_1) P(b_2) db_1 db_2 = \int_{0}^{c_{b1}} \int_{0}^{c_{b2}} P_{pu}(M_{pu} | c_{b1}, c_{b2}) dc_{b1} dc_{b2}$$

Corrections for efficiency and pileup

• Correction for efficiency of normalized multiplicity distribution P(M)

$$P(M) = \frac{dN}{dM} / N_{ideal}^{ev} = \underbrace{\frac{N_{raw}^{ev}}{N_{ideal}^{ev}}}_{K_{raw}} \underbrace{\frac{1}{N_{raw}^{ev}}}_{N_{raw}} \frac{dN_{r}}{dM} = \frac{1}{K} \cdot Norm.Histogr$$

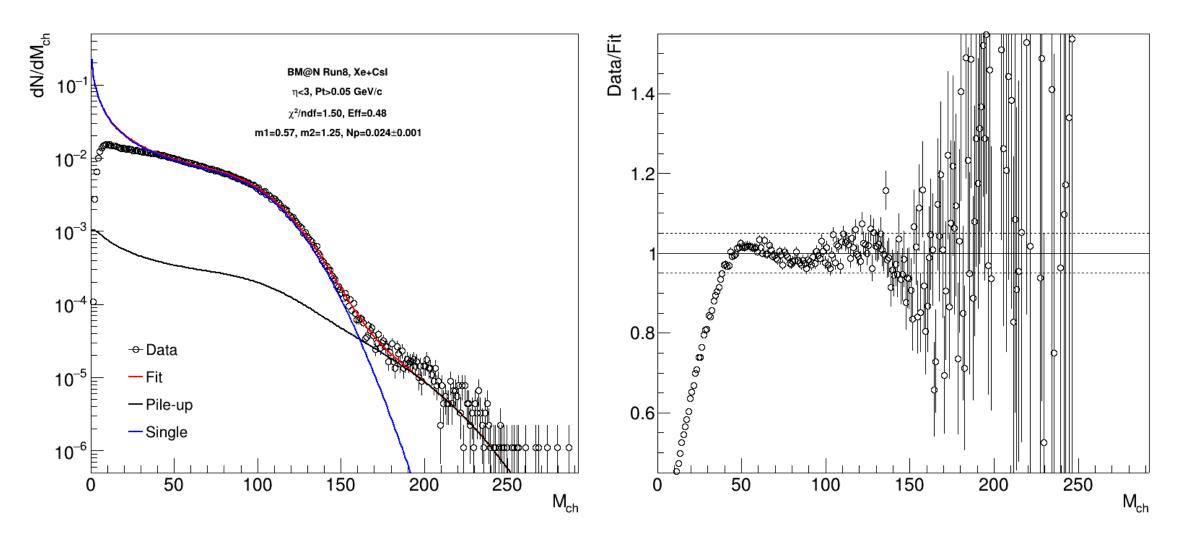
$$Eff = \frac{N_{raw}^{ev}}{N_{ideal}^{ev}} = \frac{1}{K} \quad \text{integral efficiency}$$

• Fit function for multiplicity distribution P(M)

$$F(M) = K \cdot P_{total}(M), P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)$$

 m_1, m_2, K, N_p -fit parameters, F(M) – fit function, corrected for efficiency and pileup

Fit results



Vertex Cuts: CCT2, $N_{vtxTr} > 1$, $|V_{x,y} - (0.3, 0.14)| < 1$ cm, $|V_z - 0.07| < 0.2$ cm Track selection: Nhit>4, $\eta < 3$, Pt>0.05 GeV/c

Good agreement with fit

The Bayesian inversion method (Γ-fit): 2D fit

• The fluctuation kernel for energy and multiplicity at fixed

impact parameter can be describe by 2D Gamma distr.:

$$P(E, M \mid c_b) = G_{2D}(E, M, \langle E \rangle, \langle M \rangle, D(E), D(M), R)$$

$$c_b = \int_0^b P(b')db'$$
 – centrality based on
impact parameter

 $\langle E \rangle$, D(E) – average value and variance of energy

 $\langle M \rangle$, D(M) – average value and variance of mult.

R(E,M) – Pirson correlation coefficient

 $R(E,M) = \varepsilon_1 \cdot m_1 \cdot R(E',M') \sqrt{\frac{D(E')D(M')}{D(E)D(M)}}$

 $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2, \mathcal{M}_1, \mathcal{M}_2$ - fit parameters $\langle E'(c_b) \rangle$ – average value and var. of energy/mult. $D(E'(c_b))$ from the rec. model data

$$\langle E \rangle = \varepsilon_1 \langle E'(c_b) \rangle + \varepsilon_0, \quad D(E) = \varepsilon_2 D(E'(c_b)) \langle M \rangle = m_1 \langle M'(c_b) \rangle, \quad D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$$

 $\langle E'(c_b) \rangle$, $D(E'(c_b))$ - can be approximated by polynomials

$$\langle E'(c_b) \rangle = \sum_{j=1}^{12} a_j c_b^j, \quad D(E'(c_b)) = \sum_{j=1}^{19} b_j c_b^j$$

 $\langle M'(c_b) \rangle = \sum_{j=1}^{12} a_j c_b^j, \quad D(M'(c_b)) = \sum_{j=1}^{6} b_j c_b^j$

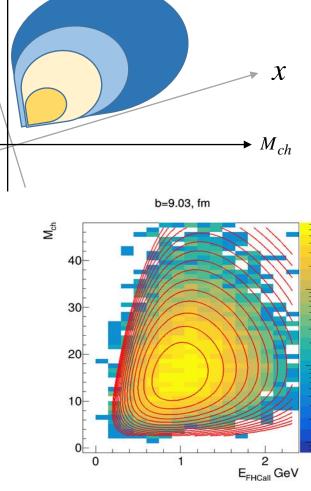
2D Gamma distribution

It is possible to find such a rotation angle of the system that cov(x, y) = 0Then the two-dimensional distribution in the new coordinate system will be

$$G_{2D}(E_{FH}, M_{ch}, \langle E \rangle, \langle M \rangle, D(E), D(M), R) = G(x, \theta_x, k_x) \cdot G(y, \theta_y, k_y)$$
$$G(x, \theta_x, k_x) \cdot G(y, \theta_y, k_y) = \frac{(x)^{k_x(c_b) - 1} e^{-x/\theta_x}}{\Gamma(k_x(c_b))\theta_x^2} \cdot \frac{(y)^{k_y(c_b) - 1} e^{-y/\theta_y}}{\Gamma(k_y(c_b))\theta_y^2}$$

$$\theta_{x} = \frac{D(x)}{\langle x \rangle}, \quad k_{x} = \frac{\langle x \rangle^{2}}{D(x)}, \quad \theta_{y} = \frac{D(y)}{\langle y \rangle}, \quad k_{y} = \frac{\langle y \rangle^{2}}{D(y)}$$
$$\alpha = \arctan\left(\frac{2\sqrt{D(E)D(M)}R(E,M)}{D(E) - D(M)}\right)$$

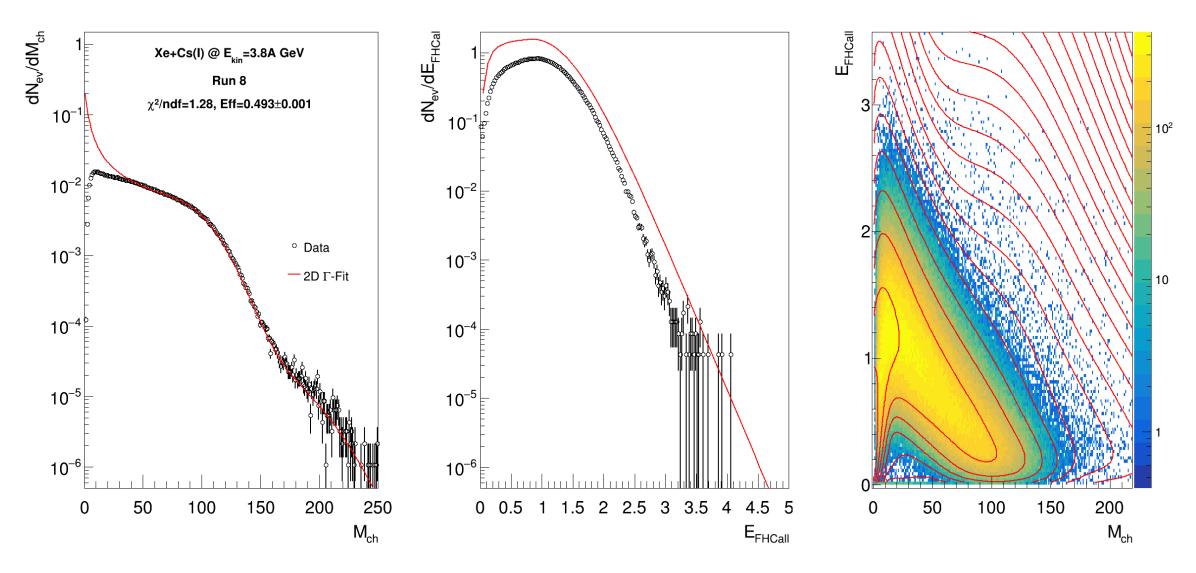
The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution



 E_{FH}

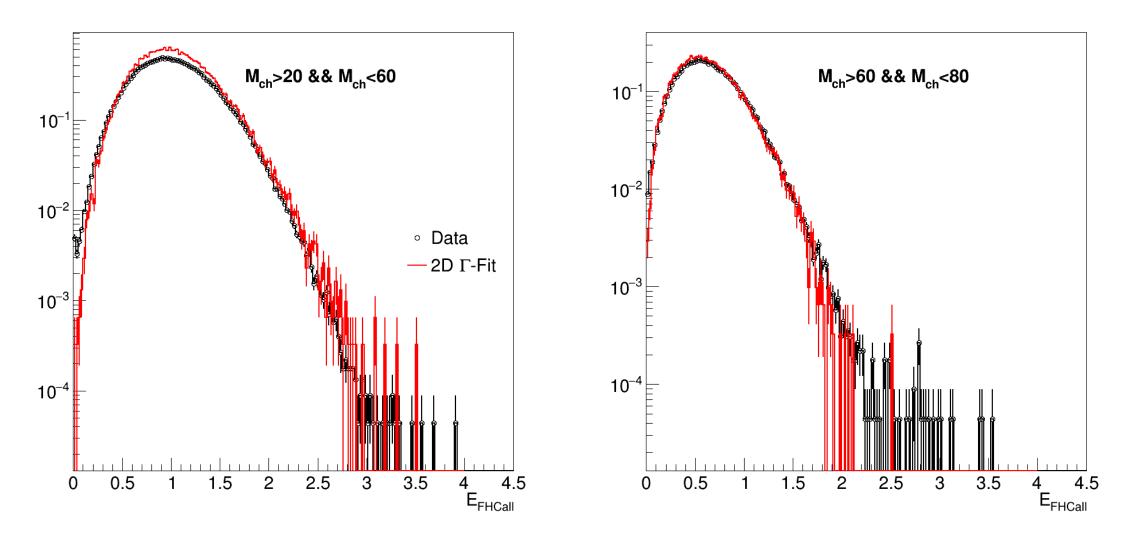
y

2D fit results



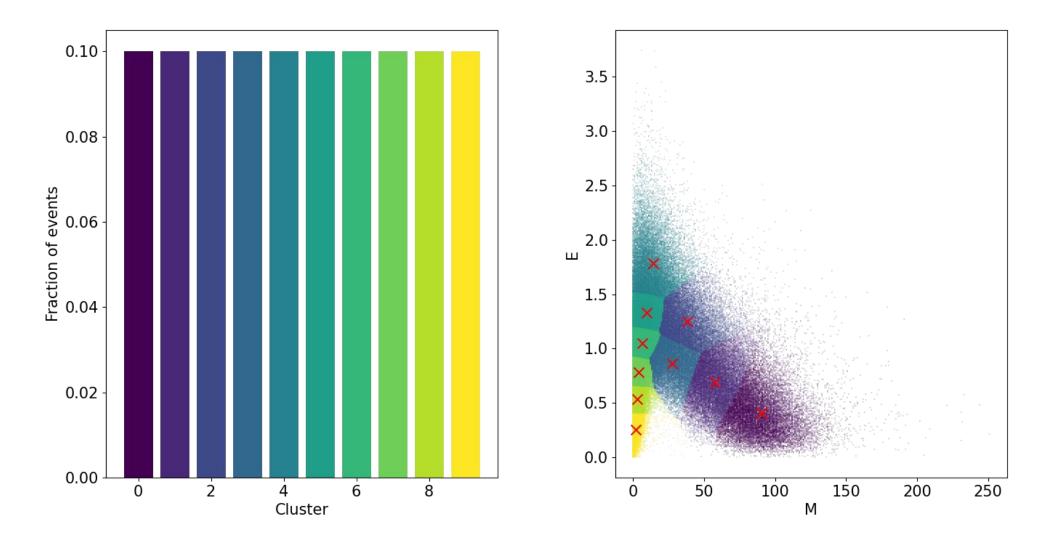
Good agreement between fit and data.

Energy distribution



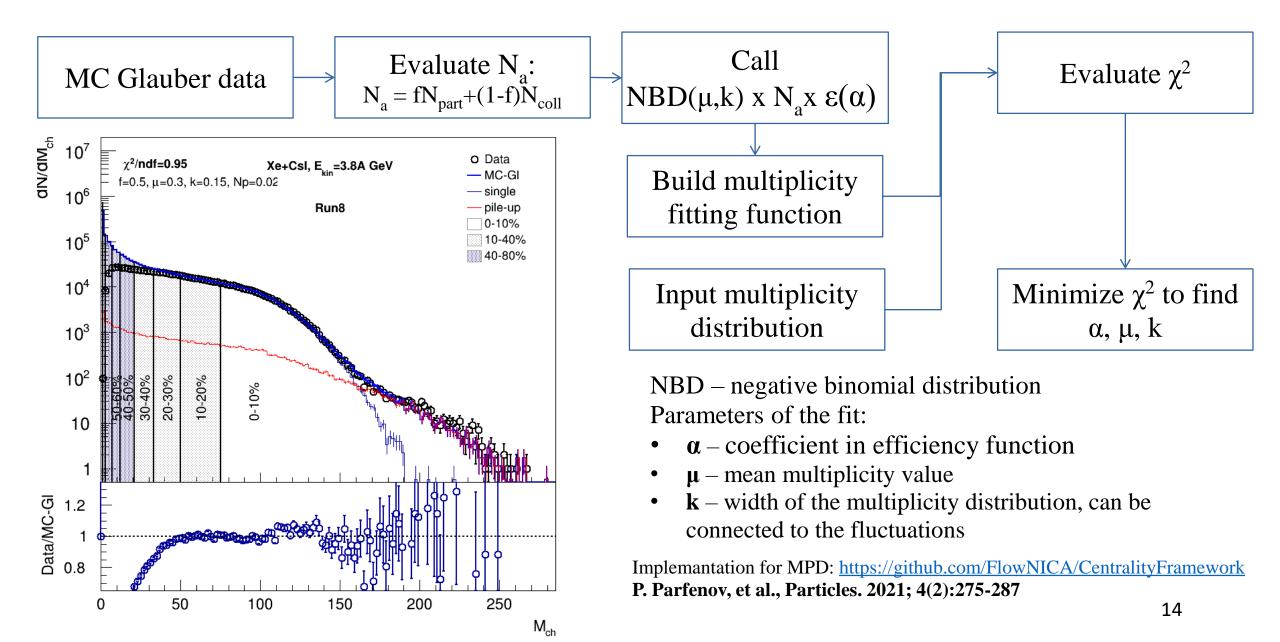
Good agreement between fit and data.

Clusterization with k means for centrality classes

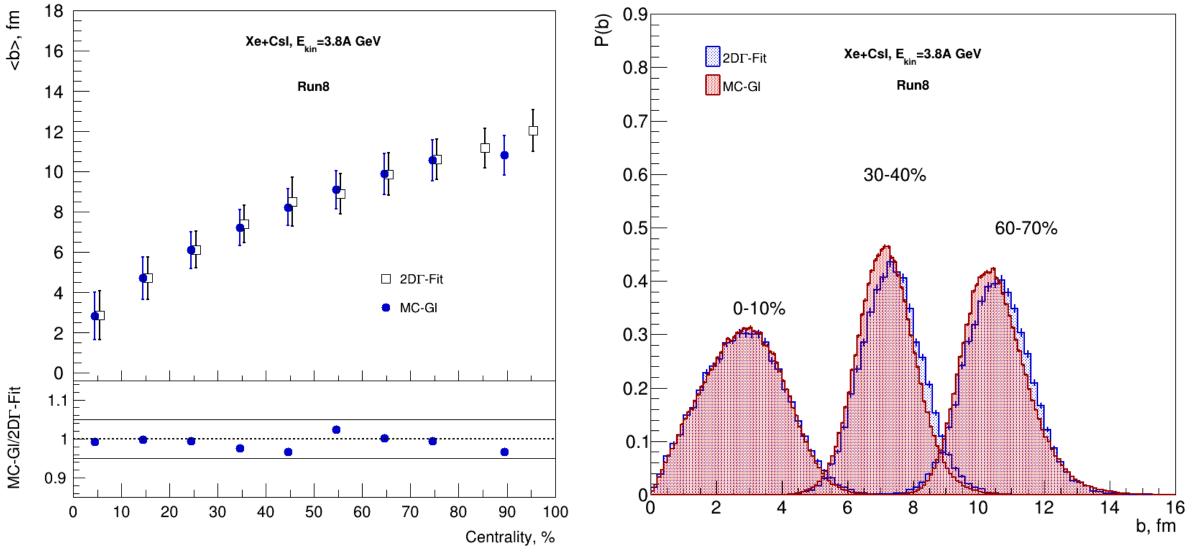


the bivariate fit distribution was divided into 10 centrality classes

MC-Glauber based centrality framework



Comparison with MC-Glauber fit



There is agreement within 5%.

Summary and outlook

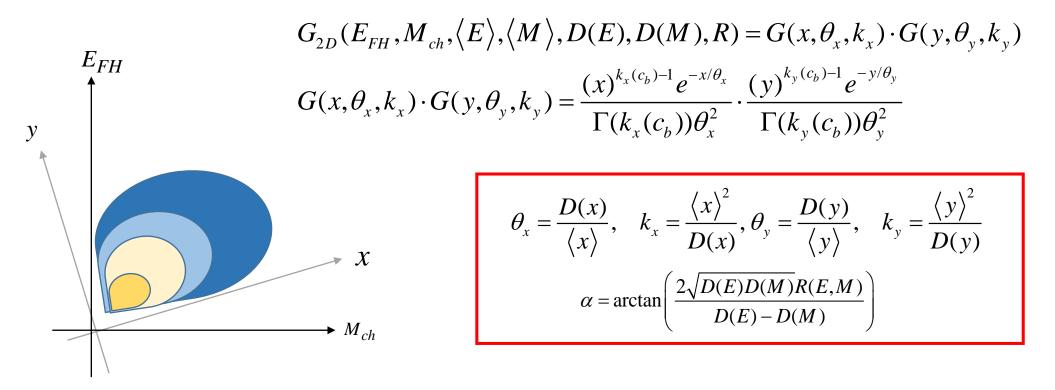
- A new approach for efficiency and pileup correction was developed
- The Bayesian inversion method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- A new approach for centrality determination with energy of spectators and multiplicity of charged particles was proposed
- The proposed method was applied to the data from BM@N experiment
 - results are consistent with the conventional MC-Glauber based approach
- It is planned to create a two-dimensional method based on a signal from a hodoscope and energy from the FHCal

Thank you for your attention!

2D Gamma distribution

It is possible to find such a rotation angle of the system that cov(x, y) = 0

Then the two-dimensional distribution in the new coordinate system will be



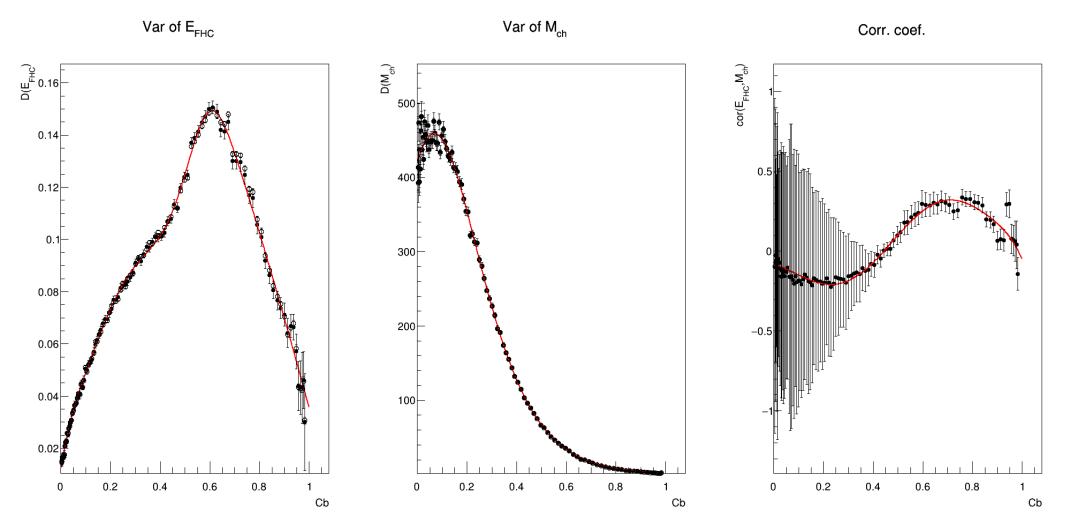
mean value and variance in the new coordinate system

$$\langle x \rangle = \cos(\alpha) \langle E \rangle + \sin(\alpha) \langle M \rangle \qquad D(x) = D(E) \cos(\alpha)^2 + R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \sin(\alpha)^2$$

$$\langle y \rangle = -\sin(\alpha) \langle E \rangle + \cos(\alpha) \langle M \rangle \qquad D(y) = D(E) \sin(\alpha)^2 - R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \cos(\alpha)^2$$

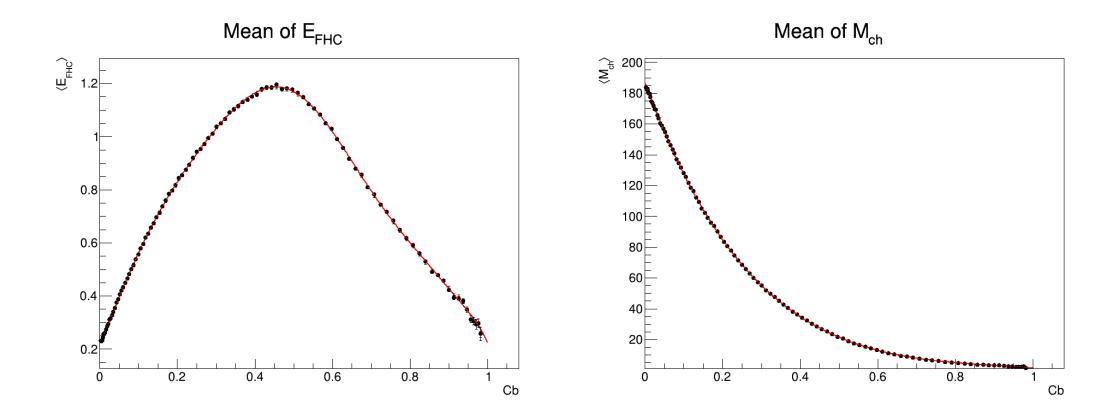
18

Dependence of the variance of multiplicity and energy on centrality

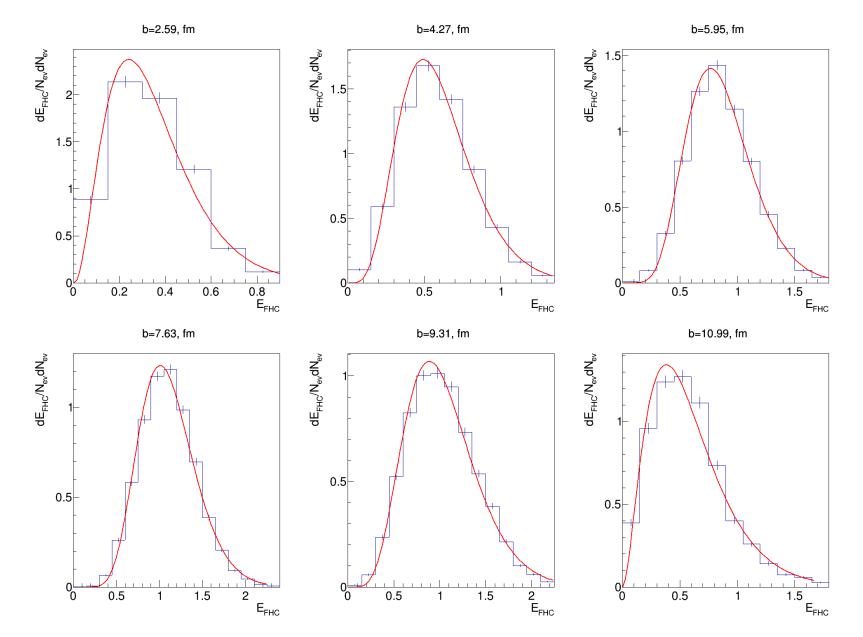


Good fit quality

Dependence of the average value of multiplicity and energy on centrality

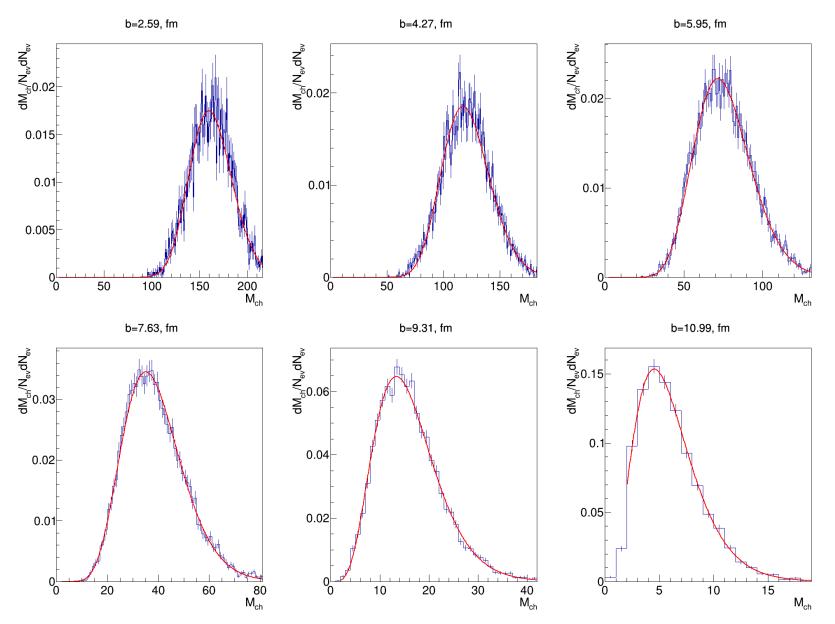


Energy distr. fit



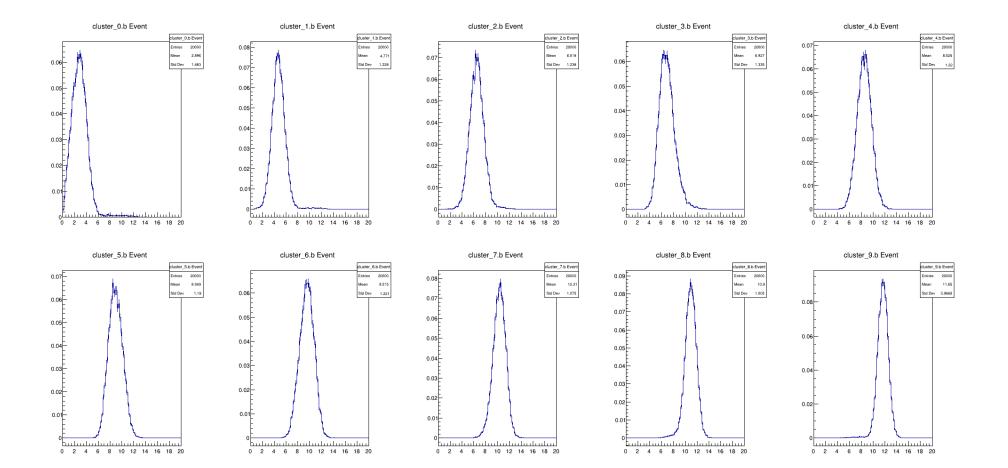
21

Mult distr. fit

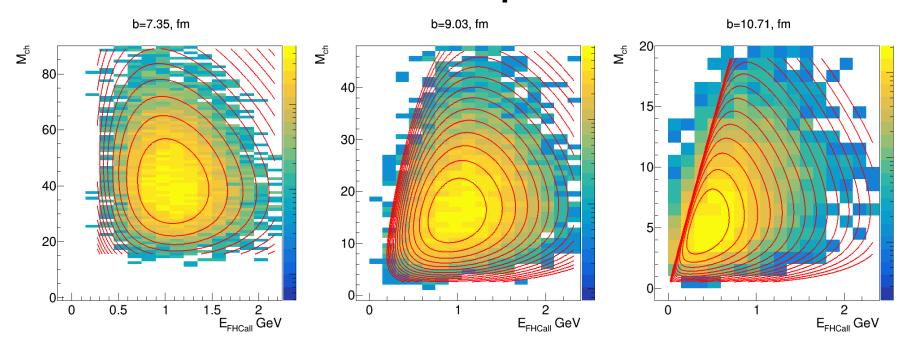


22

Impact parameter distribution for centrality classes



The fluctuation of energy and multiplicity at fixed impact

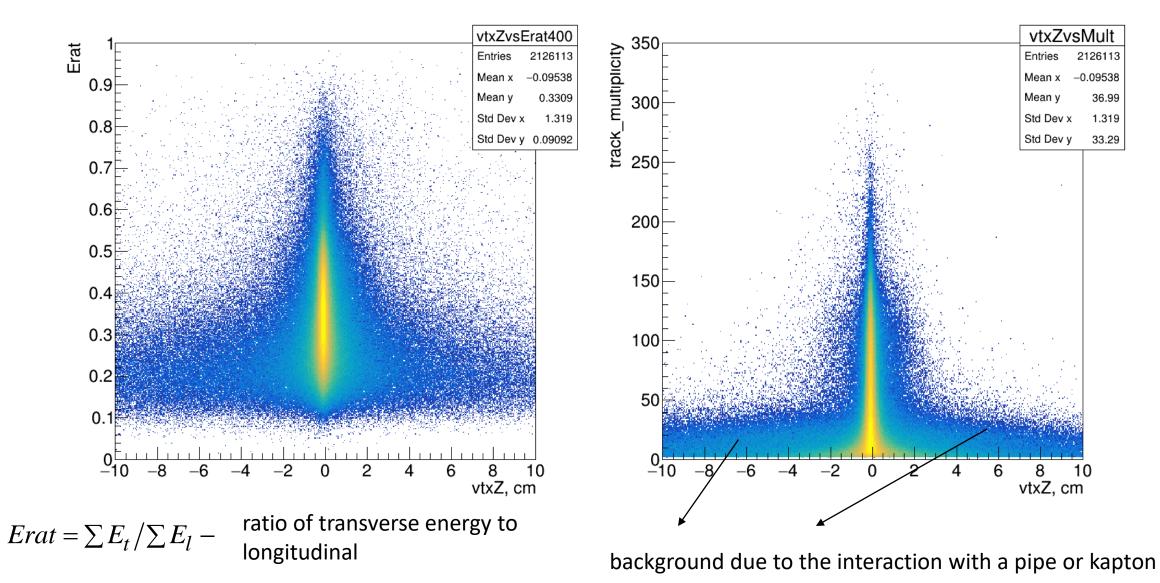


The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution

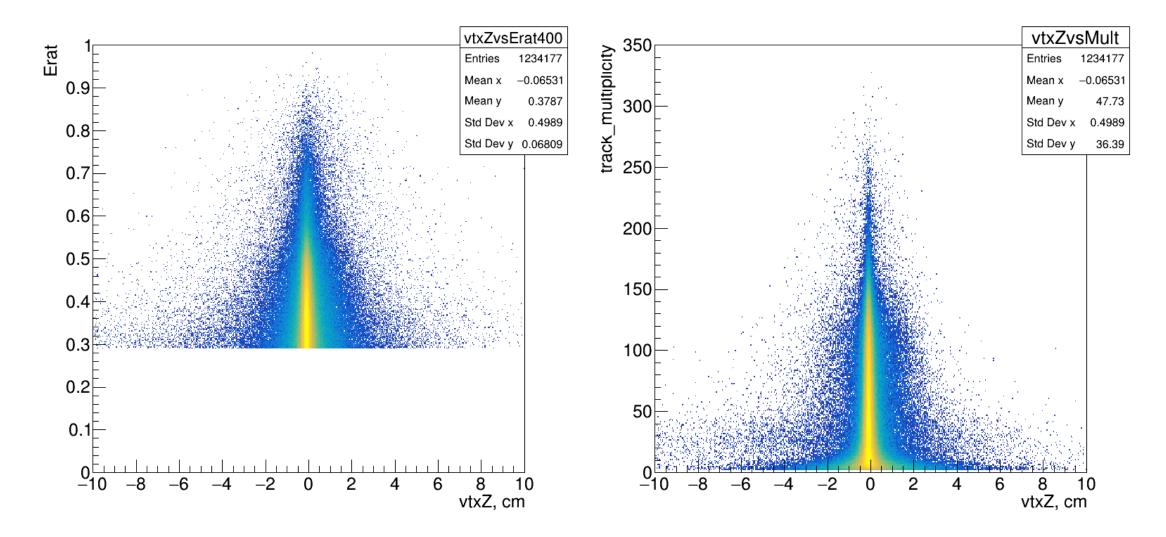
• Find probability of *b* for fixed range of E and M using Bayes' theorem:

$$P(b \mid E_1 < E < E_2, M_1 < M < M_2) = P(b) \frac{\int_{E_1}^{E_2} \int_{M_1}^{M_2} P(E, M \mid c_b) dM dE}{\int_{E_1}^{E_2} \int_{M_1}^{M_2} \int_{0}^{1} P(E, M \mid c_b) dM dE dc_b}$$

Event cleaning



Event cleaning



The most of the background has been suppressed after cuts for Erat >0.29 and vertex position $(V_x-0.3)^2+(V_y-0.14)^2<1$ cm

Event cleaning in HADES

Segmented gold target:

- ¹⁹⁷Au material
- 15 discs of Ø = 2.2 mm mounted on kapton strips

Z^{hit}

200

150

100

50

diamond

-80

-60

250 START

- ∆z = 3.6 mm
- 2.0% interaction prob.

20

0

v_z [mm]

Kindler et al., NIM A 655 (2011) 95

Remove Au+C bkgd on the kapton with a cut on $ERAT = \sum E_t / \sum E_l$ Event vertex cut on target region ERAT Au target Billiothing 104 10^{3} 10^{3} 1.5 START Au target 10² 10² 0.5 10 10 rejected

-80

-60

-20

-40

20

3

 v_z [mm]

٥

30/11/2021 FANI-2021 | R. Holzmann (GSI) for the HADES collaboration

beam direction

http://indico.oris.mephi.ru/event/221/session/1/contribution/1/material/slides/0.pdf

-20

-40

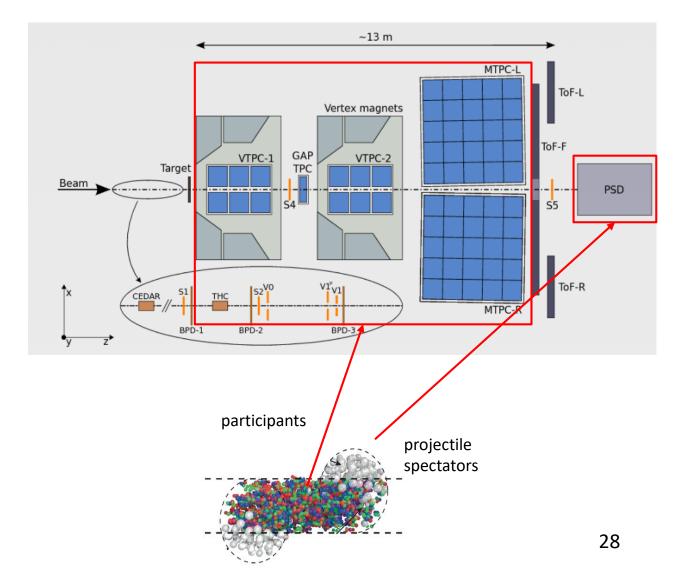
NA61/SHINE experimental setup

Data samples:

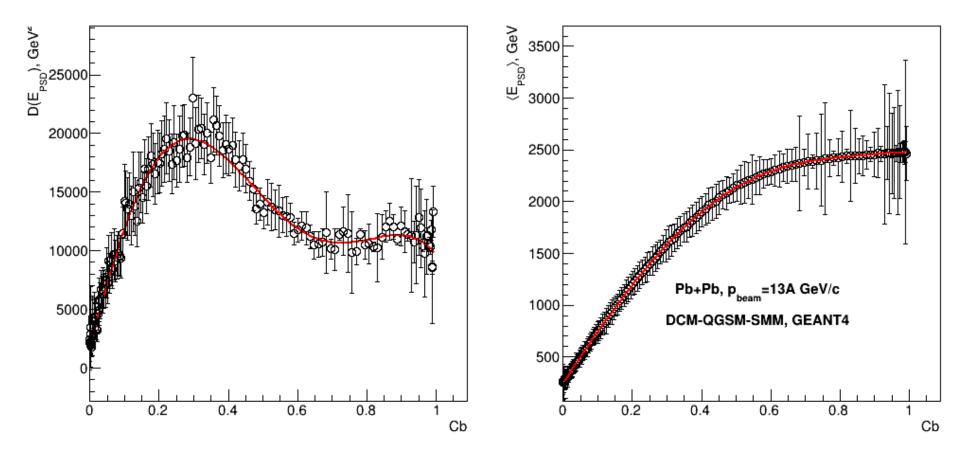
- Pb-Pb @ p_{beam} = 13A GeV/c
- data from 2016 physics run
- DCM-QGSM-SMM x Geant4 M.Baznat et al. PPNL 17 (2020) 3, 303

Subsystems

- Multiplicity: TPCs
- Spectators energy: PSD



Dependence of the average value and variance of energy on centrality



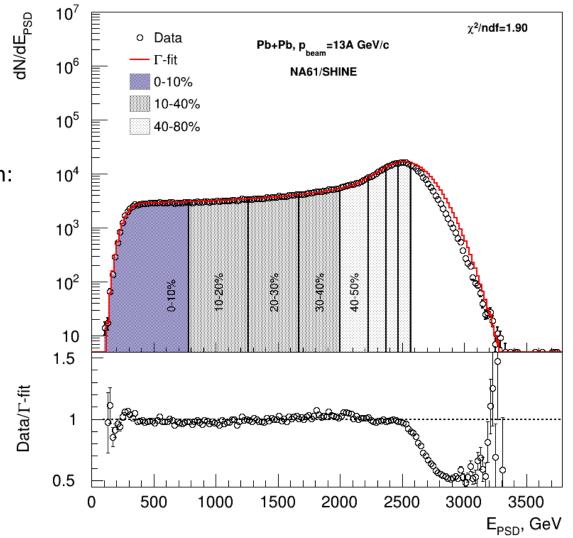
The average value and dispersion of energy from the DCM-QGSM-SMM model are well described by polynomials

Reconstruction of *b*

- Normalized energy distribution P(E) $P(E) = \int_{0}^{1} P(E \mid c_{b}) dc_{b}$
- Find probability of *b* for fixed range of E using Bayes' theorem:

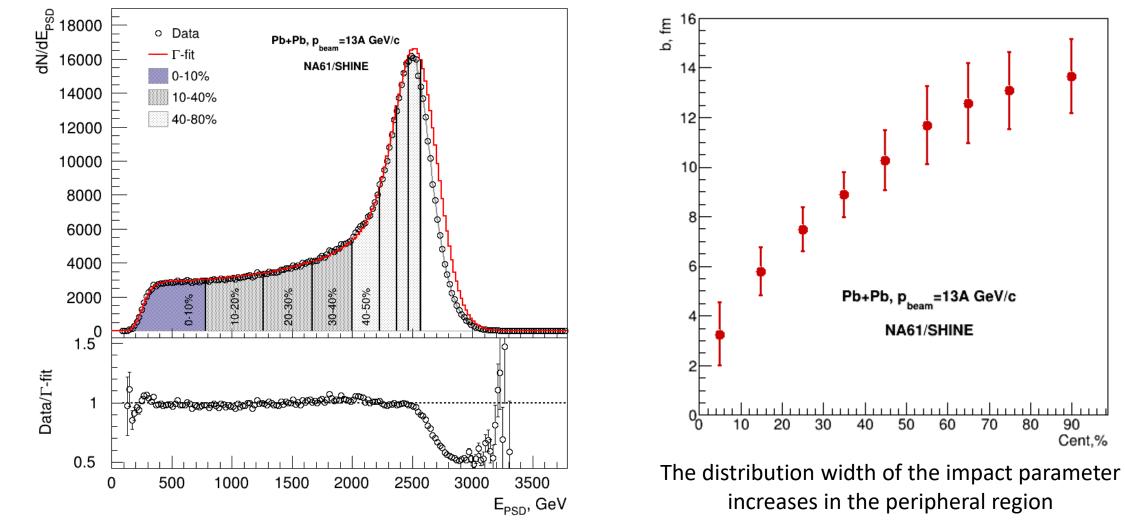
$$P(b \mid E_{1} < E < E_{2}) = P(b) \frac{\int_{E_{1}}^{E_{2}} P(b \mid E) dE}{\int_{E_{1}}^{E_{2}} P(E) dE}$$

- The Bayesian inversion method consists of 2 steps:
- -Fit normalized energy distribution with P(E)
- –Construct P(b|E) using Bayes' theorem with parameters from the fit



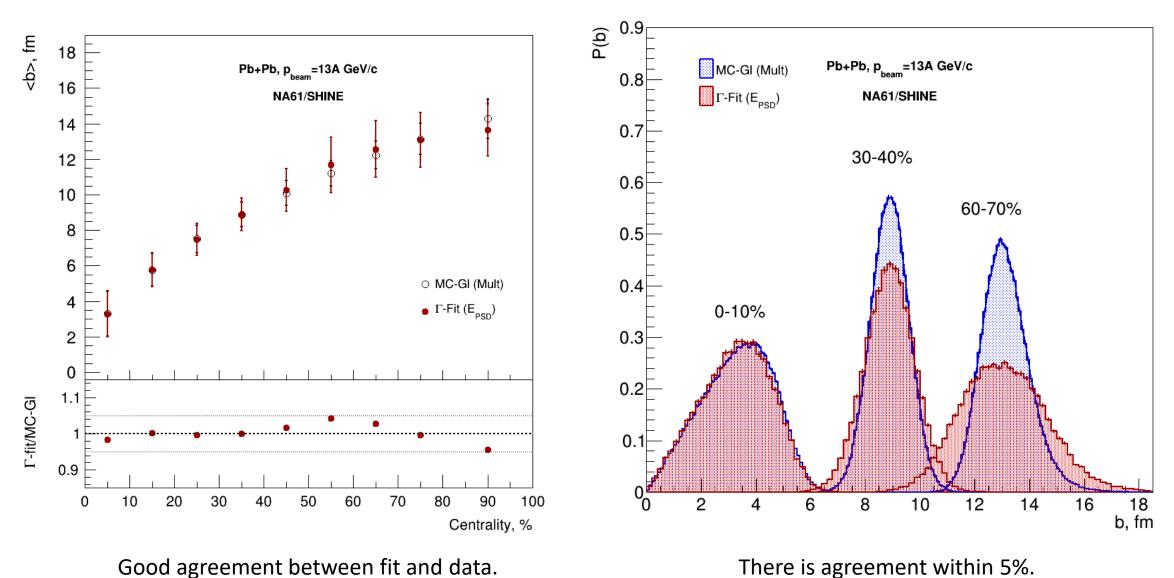
Good agreement between fit and data in wide energy range

Fit results for NA61



The method reproduces the energy distribution well. The difference in the peripheral region is due to the trigger efficiency

Comparison with MC-Glauber fit



32

Reconstruction of *b*

• Normalized multiplicity distribution P(N_{ch})

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

• Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

- The Bayesian inversion method consists of 2 steps:
- –Fit normalized multiplicity distribution with $P(N_{ch})$
- –Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

