

First steps of searching for invisible decays of ρ_0 in the NA64 experiment

Svetlana Gertsenberger¹, A. Ivanov¹, A. Zhevlakov²

¹ JINR, Veksler and Baldin Laboratory of High Energy Physics
 ² JINR, Bogolyubov Laboratory of Theoretical Physics

AYSS 2024, 01.11.2024

introduction

Astrophysical and cosmological observations, obviously demonstrate the existence of the dark matter (DM) and dark energy (DE) which are not described in the SM.

Standard Model (SM) describes the fundamental particles of matter and all their interactions.

Despite its impressive success in describing experiments, the SM cannot be considered the ultimate theory of elementary particles.

How can we find dark matter if it

- doesn't participate in electromagnetic interaction,
- invisible to direct observation,
- interacts only gravitationally and on a galactic scale?

An extension of the SM is needed to explain the existence of DE and DM

SDSS J1038+4849 from HST

introduction

What if..?

What if **the DM is part of the Dark Sector** which couple weakly with standard model particles? It is assumed that the **hierarchy** of particles in the dark sector can be **similar to the SM**. DM interacts with the SM via a vector mediator, e. g. dark photon *A'*, which is kinetically mixed with our photon

To search for such DM particles in underground experiments is difficult because of the very small cross-sections of their scattering off electrons or nuclei and small recoil energy. NA64 approach allows searching for Light Dark Matter (LDM) in the range mass MeV – GeV in the experiment at the SPS accelerator at CERN

- useful coupling for comparison different experiments

introduction

What if..?

What if **the DM is part of the Dark Sector** which couple weakly with standard model particles? It is assumed that the **hierarchy** of particles in the dark sector can be **similar to the SM**. DM interacts with the SM via a vector mediator, e. g. dark photon *A'*, which is kinetically mixed with our photon

To search for such DM particles in underground experiments is difficult because of the very small cross-sections of their scattering off electrons or nuclei and small recoil energy. **NA64** approach allows searching for Light Dark Matter (LDM) in the range mass MeV – GeV in the experiment at the SPS accelerator at CERN

- useful coupling for comparison different experiments

NA64 experiment

- Thermal sub-GeV Dark Matter (LDM)
- axions, ALP, $S \rightarrow \gamma \gamma$ decays
- S, P, V, and A dark portal particles, their invisible, visible, semi-visible decays
- Light B-L Z'

A. Andreas et al. [NA64 Collaboration]. CERN-SPSC-2013-034; SPSC-P-348 (2013) Yu. Andreev et al. [NA64 Collaboration] Phys.Rev.Lett. 129 (2022) 16, 161801 Phys. Rev. Lett. 125, 081801 (2020)

- ATOMKI anomaly: X17 (P, V, A') \rightarrow e+e- decays
- MilliQ particles, etc...
- Lepton Flavor Violation in $e \rightarrow \tau$ and $e \rightarrow \mu$ conversion

NA64e (since 2015) 100 GeV *e*-beam

 $N_{eot} = 5.2 \times 10^{11}$

target: lead ECAL

signature: missing energy in invisible mode or SM particles pair production in visible mode

vector meson search motivation

Schematic view of the Dark Matter (DM) signal from A'Bremsstrahlung. DM is produced in the target (ECAL)

vector meson search motivation

A hard photon is produced in the ECAL, and converts to a vector meson V in an exclusive photoproduction process in the calorimeter. The vector meson then decays invisibly to DM via mixing with the A'.

Signal box:

 $E_{ECAL} < 70 \; GeV + E_{HCAL} < 1 \; GeV$

Due to ECAL threshold it is impossible to investigate region $80 \ GeV < E_{ECAL} < 100 \ GeV$

experimental searches

	Br($V \rightarrow invisible$)	Experiment
$ ho_0$?	NA64?
ω	$< 7.3 \times 10^{-5}$	BES III (2018) arXiv:1805.05613
arphi	$< 1.7 \times 10^{-4}$	BES III (2018) arXiv:1805.05613
J/ψ	$< 7 \times 10^{-4}$	BaBar (2013) arXiv:1303.7465
Ŷ	$< 3 \times 10^{-4}$	BaBar (2009) arXiv:0908.2840

y - dimensionless coupling that defines the annihilation cross section $m_{\chi} - DM$ mass $\alpha_D = e_D^2/4\pi - dark$ coupling $V = \rho_0, \omega, \varphi$

ρ_0 - mesons simulation

- the majority of ρ_0 meson are low energy and decay early in the target
- contribution from ρ_0 decay will be small for existing strategy
- need more energetic ρ_0 meson (need to simulate higher statistic to estimate more precisely the amount of energetic ρ_0)
- 1.3×10^7 all ρ_0 mesons or ~10⁵ high energy ρ_0 are expected (with current statistics)

The total energy distribution of ρ_0 - mesons produced in 1 million events of a 100 GeV electron beam

ρ_0 - mesons simulation

- almost all ρ_0 mesons are directed towards the HCAL
- in case of energetic ρ_0 it possible to register the deposition energy from the decay products or the absence of energy with current setup
- to register the decay products from low energy ρ_0 we have to change trigger, reconstruct the setup, install additional detectors

The angular distribution of ρ_0 mesons produced in 1 million events of a 100 GeV electron beam.

The constraints on dark sectors

There is no existing experimental bound for $\rho_0 \rightarrow DM$ process.

The NA64 ultimate line should have lower sensitivity than the first estimation because of the low energy of ρ_0 .

In any case, there is an opportunity for this work =)

summary

With statistics of total electrons on target $N_e = 5.2 \times 10^{11}$ collected since 2015, $1.3 \times 10^7 \rho_0$ - mesons or ~10⁵ high energy ρ_0 are expected

It is possible to increase signal box for the A' searching. But due to ECAL threshold it is impossible to investigate region 80 $GeV < E_{ECAL} < 100 GeV$

It is difficult to use existing strategy. It is necessary to change the analysis strategy. For example change the setup or investigate other channel of ρ_0 decay $\rho_0 \rightarrow \mu^+ \mu^- (\sim 10^{-5} \%)$

Thanks!