

Neural networks in the Baikal-GVD experiment: selection of neutrino events and neutrino energy reconstruction

Matseiko Albert^{1,2}, MIPT, INR RAS

This work was supported by the Russian Science Foundation grant no. 24-72-10056.

AYSS 2024, 28.10 — 01.11, 2024, Dubna, Russia

Plan

- BaikalGVD experiment:
 a) structure
 b) events
 c) data
- 2. Neutrino selection against the EAS background

3. Neutrino energy reconstruction

I. Baikal-GVD

Baikal-GVD

Purposes:

- observe TeV-PeV neutrinos originating from the outside of the Solar System
- investigate their sources

13 clusters are setup by now

Cluster setup process

Baikal-GVD

- Detect cherenkov radiation
- Live calibration of OM positions (accuracy ~20 cm)
- Accuracy of determining the response time ~2 ns.

Events rate per cluster (of all origins): ~40-90 Hz

EAS and v induced events

1) EAS

- showers from cosmic rays
- mostly muons reach the cluster
- «down-going» events

EAS and v induced events

1) EAS

- showers from cosmic rays
- mostly muons reach the cluster
- «down-going» events

2) Neutrino

- astrophysical or atmospheric
- leptons are born in the cluster
- easily pass the Earth
 - -> «up-going» events

Event options

Event options

Event options

Baikal-GVD

Track event picture

Data representation

Single cluster

Data representation

II. Neutrino selection against the EAS background

Motivation

• EAS to v events ratio = 10^{6} - 10^{7} .

Motivation

- EAS to v events ratio = 10^{6} - 10^{7} .
- Standard approach: reconstruction of the zenith angle + cut.
 Computationally expensive, ~50% v are lost.

The goal is to achieve better separation using neural networks.

Dataset

- Using Monte-Carlo simulation^[1]!
 EAS evolution and propagation of particles in water.
- Track events:

 Muons from EAS
 ν_μ (neutrinos of muon flavour)

	train	test	validation
EAS	≈3*10 ⁶	≈5*10 ⁵	≈2*10 ⁶
Neutrino	≈6*10 ⁵	≈10 ⁵	≈1.3*10 ⁷

- Cuts: min 8 signal hits min 2 strings triggered
- Target feature type of particle Labels: 0 — EAS, 1 — neutrino

The network

The network

predictions p_v
 --> classification

• threshold ξ is close to 1!

Metrics

 Exposition: E = n_v/N_v fraction of v identified correctly (True Positive Rate)

 Suppression: S = n_{EAS}/N_{EAS} fraction of EASs falsely assigned to v (False Positive Rate)

Interested in region, where S=10⁻⁶

Метрики: весь датасет

Exposition E

Всего и-событий: 13_249_470

0.7

0.8

Порог ξ

0.9

1.0

0.6

1.0

0.8

0.6

0.4

0.2

0.0

0.5

ш

Suppression S

— Всего ШАЛ-событий: 2_283_586 10-3 10^{-4} S 10-5 10^{-6} 10-7 0.5 0.9 0.6 0.7 1.0 0.8 Порог ξ

E vs S

III. Neutrino energy reconstruction

Motivation

- Energy is an important parameter of a particle: the spectrum of astrophysical neutrinos can tell a lot about the sources
- Current reconstruction error: factor from 3 to 5 for Energy > 100Tev

We want to improve the reconstruction quality using neural networks

Dataset

- Monte-Carlo (again)
- Only ν_µ track events
 We reconstruct the muon's energy E! since it is a directly observable particle
- Cuts:
 1) min 8 hits
 2) min 2 strings
- Target feature: $log_{10}E$
- A uniform spectrum was selected

Loss function

- Let's denote: lgE -- true energy, lgE^* -- prediction. Want our network to predict it's error σ for each event!
- Using special *loss* function:

$$loss = \frac{1}{n} \sum_{i=1}^{n} \left(ln(\sigma_i^2) + \frac{(lgE_i - lgE_i^*)^2}{\sigma_i^2} \right)$$

Maximizes the likelihood of a hypothesis: $lgE \sim N(lgE^*, \sigma)$.

The network

Metrics: energy branch, [E] = [GeV]

*lgE** and *lgE* correspondence

Histogram of $(lgE - lgE^*)$

Metrics: energy branch, [E] = [GeV]

Metrics: error σ branch

 σ predicts individually for each event

Interval $(lgE^* - \sigma, lgE^* + \sigma)$ must contain 68.2% of lgE values

Average σ must correspond to width of 68.2% pecentile of real error

IV. Conclusion

32

• Neural networks helps (evaluated on MC simulation):

- separate neutrino events preserving 60% while suppressing EAS background by 10⁶ times

reconstruct the energy of tracks with an error factor of 4 and below for predictions >10 TeV
 --> it is proposed to discard predictions < 10 TeV as unreliable.

- individually for each event, **estimate the energy prediction error** at the level of 1 standard deviation (coverage from 64% to 72%)

- Future plans:
 - further improvement of neural networks, training on a larger MC
 - evaluation of the quality of predictions on real data

- implementation of the developed models in the BARS telescope data analysis package

Thanks!

Contacts:

matseiko.av@phystech.su t.me/AlbertMac280 Code and models:

github.com/ml-inr/Baikal-ML

github.com/AlbertMatseiko/

- NeutrinoSelection
- NuEnergy

Backup

More energy slides

Quality criteria:

1) z =
$$\frac{logE_{true} - logE}{\sigma} \sim N(0,1)$$

2) central quantile ± σ = 68%

3) σ and $\Delta(logE)$ correlation

Standardized score z distribution

Quality criteria:

1) z =
$$\frac{logE_{true} - logE}{\sigma} \sim N(0,1)$$

2) central quantile ± σ = 68%

3) σ and $\Delta(logE)$ correlation

Standardized score z 2D distribution

Quality criteria:

1)
$$z = \frac{\log E_{true} - \log E}{\sigma} \sim N(0,1)$$

2) central quantile $\pm \sigma = 68\%$

3) σ and $\Delta(logE)$ correlation

Quality criteria:

1) z =
$$\frac{logE_{true} - logE}{\sigma} \sim N(0,1)$$

2) central quantile $\pm \sigma$ = 68%

3) σ and $\Delta(logE)$ correlation

Pearson coefficient = 0.5Corresponds to: $logE_{true} - logE \sim N(0, \sigma)$!

 σ vs Δ (logE) 2D histogram 2.5 - 10⁰ 2.0 Predicted σ 1.5 10-1 1.0 - 10⁻² 0.5 0.0 0.5 1.5 2.0 2.5 0.0 1.0 |log10Etrue - log10Epred|

Metrics: σ branch some more graphs

As energy increases, the predicted error decreases!

Общий план применения нейронных сетей

Общий план применения нейронных сетей

Общий план применения нейронных сетей

Технические

данные

 $\lambda_{scattering}^{eff} \approx 480$ м при 475 nm $\lambda_{absorption}^{max} \approx 24$ м

Трековые события :точность угла прилета ≈ 0, 25° Каскадные события: разрешение ≈ 2°

Монте - Карло:

Взаимодействие нейтрино с ядрами : СТЕQ4М (нейтрино с энергиями 10 ГэВ – 100ТэВ Прилет мюонов: программа CORSIKA 5.7 на модели адронных вз-ий QGSJET Распространение мюонов до Байкала : MUM v1.3u Космические лучи: модель на базе KASCADE (240 ГэВ – 20 ПэВ) Ошибка по времени 5 нс ; 30% по заряду

EAS:Nu = 1:1 train: 5556146 events, test: 465253 events, val: 22345821 events

Разные графики

47

log10(FPR)

Больше энергии

Polar angle

Больше потока

8

Спектры частиц

Энергия, нейтрино

Полярный угол, нейтрино

Спектры частиц

Энергия, мюоны

Полярный угол, мюоны

Спектры частиц

Азимутальный угол, мюоны

Азимутальный угол, нейтрино

10

Разные формулы

Focal loss

$$FL(p_t) = -\alpha_t (1-p_t)^{\gamma} \log(p_t)$$
$$p_t = \begin{cases} p & \text{if } y = 1\\ 1-p & \text{otherwise,} \end{cases}$$

Оценка потока нейтрино (Следует из определний Е и S)

$$n_{v} \approx \frac{n(\xi) - S^{0}(\xi) \ n(0)}{E^{0}(\xi) - S^{0}(\xi)}$$

ξ - порог классификации.

S^o, E^o - оценки подавления и экспозиции на тестовом МК наборе данных.

n(ξ) - количество событий правее порога.

Можно оценить ошибку!

Отношение ШАЛ к v : ~ 100 000

Оценка потока нейтрино

$$n_{v} \approx \frac{n(\xi) - S^{0}(\xi) \ n(0)}{E^{0}(\xi) - S^{0}(\xi)}$$

Можно оценить ошибку!

- Возьмём тестовые нейтринные события.
- Е параметр биномиального распределения! По МК оцениваем Е^о с доверительным интервалом.
- ШАЛ события и S⁰ аналогично!
- Считаем погрешность формулы потока.

ξ - порог классификации.

S⁰, E⁰ - подавление и экспозиция, оцененные на МК.

n(ξ) - количество событий, правее порога.

Отношение ШАЛ к v: ~ 100 000

Оценка потока нейтрино

$$n_{\nu} \approx \frac{n(\xi) - S^{0}(\xi) \ n(0)}{E^{0}(\xi) - S^{0}(\xi)}$$

Можно оценивать в 2 режимах:

1) Оценка числа v-событий в данных

Оценка параметра потока ν
(число n(ξ) - Пуассоновская случ. величина)

ξ - порог классификации.

S⁰, E⁰ - подавление и экспозиция, оцененные на МК.

n(ξ) - количество событий, правее порога.

Отношение ШАЛ к v : ~ 100 000

Вывод формулы ошибки

Appendix A: Derivation of Eq. (??)

In this section we derive distributions, expected values and dispersions of random values in Eq.(??). Then, using them, we evaluate the error of estimating the number of neutrino events using Eq.(??). In this section, we use P to denote probability of some outcome for a random variable, and M and D for its expected value and dispersion, accordingly.

We start by discussing the properties of random variables in the experimental dataset. Let the latter contains n^0 events in total, n^0_ν of which are neutrino-induced and $n^0_\mu \equiv n^0 - n^0_\nu$ are EAS-induced. n^0_ν and n^0_μ are random variables distributed according to the Poisson law with parameters ν and μ respectively. Hence

$$P(n_{\nu}^{0} = k) = \frac{\nu^{k} e^{-\nu}}{k!}, \qquad (A1)$$
$$P(n_{\mu}^{0} = k) = \frac{\mu^{k} e^{-\mu}}{k!}. \qquad (A2)$$

Since n^0 is a sum of n^0_{ν} and n^0_{μ} , it also follows the Poisson distribution,

$$P(n^0 = k) = \frac{(\nu + \mu)^k e^{-(\nu + \mu)}}{k!}$$
 (A3)

It's expected value and dispersion are:

$$M(n^0) = D(n^0) = \nu + \mu$$
. (A4)

Let us now address the classification of events by the neural network. A trained neural network can be considered as a black box. As it was discussed in section ??, for a fixed classification threshold ξ , the network classifies a neutrino-induced event correctly with some probability E, and EAS-induced event is identified incorrectly with the probability S. Hence the number of identified true and false neutrino-induced events are independent random variables with binomial distributions:

 $P(n_{\nu} = k | n_{\nu}^{0} = m) = Bin(m, E)(k), \quad (A5)$ $P(n_{\mu} = k | n_{\mu}^{0} = m) = Bin(m, S)(k). \quad (A6)$

Here $n_{\nu}(\xi) \equiv n_{\nu}$, $n_{\mu}(\xi) \equiv n_{\mu}$, and Bin(m, p)(k) stands for the binomial distribution with number of experiments *m* and success probability *p*:

$$Bin(m,p)(k) = C_m^k p^k (1-p)^{m-k}$$
. (A7)

The number of neutrino-induced events identified by the neural network on a test dataset is subject to both of the above-described random processes. Hence the full probability distributions, $P_{\rm f}$, of n_{ν} and n_{μ} can be obtained by multiplying the corresponding Poisson and binomial distributions,

$$P_{\rm f}(n_{\nu} = k) = \sum_{m=0}^{\infty} P(n_{\nu} = k | n_{\nu}^0 = m) P(n_{\nu}^0 = m) (A8)$$
$$P_{\rm f}(n_{\mu} = k) = \sum_{m=0}^{\infty} P(n_{\mu} = k | n_{\mu}^0 = m) P(n_{\mu}^0 = m) (A9)$$

Using Eq. (A8), Eq. (A9), Eq. (A1) and Eq. (A2), one can evaluate the expected values and dispersions of n_{ν} and n_{μ} :

$$M(n_{\nu}) = D(n_{\nu}) = E\nu$$
, (A10)
 $M(n_{\mu}) = D(n_{\mu}) = S\mu$. (A11)

For the random variable n, which is a sum of n_{ν} and n_{μ} , one has:

$$M(n) = D(n) = E\nu + S\mu . \tag{A12}$$

Now the task is to estimate binomial parameters E and S of the neural network after measurements of n_{ν} and n_{μ} on the test dataset. To do this, we use standard formulae:

$$\tilde{E} = \frac{n_{\nu}(\xi)}{n_{\nu}^{0}}, \quad \tilde{S} = \frac{n_{\mu}(\xi)}{n_{\mu}^{0}}.$$
 (A13)

The errors of these evaluations are calculated using the Clopper–Pearson interval. For example, setting confidence level $1 - \alpha$ for \tilde{E} , we obtain interval $E_{\min} < E < E_{\max}$, where E_{\min} and E_{\max} are from equations:

$$\frac{\Gamma(n_{\nu}^{0}+1)}{\Gamma(n_{\nu}^{0})\Gamma(n_{\nu}^{0}-n_{\nu}+1)} \int_{0}^{E_{\min}} t^{n_{\nu}-1} (1-t)^{n_{\nu}^{0}-n_{\nu}} dt = \frac{\alpha}{2} \quad (A14)$$

$$\frac{\Gamma(n_{\nu}^{0}+1)}{\Gamma(n_{\nu}+1)\Gamma(n_{\nu}^{0}-n_{\nu})} \int_{0}^{E_{\max}} t^{n_{\nu}} (1-t)^{n_{\nu}^{0}-n_{\nu}-1} dt = 1 - \frac{\alpha}{2} \quad (A15)$$

The variation of \tilde{E} with confidence level $1 - \alpha = 0.68$ we will consider to be equivalent to one standard deviation and calculate as

$$\sigma_{\tilde{E}} = (E_{\text{max}} - E_{\text{min}})/2, \qquad (A16)$$

For case of S the reasoning is similar:

$$\sigma_{\tilde{S}} = (S_{\text{max}} - S_{\text{min}})/2 \qquad (A1)$$

Now we are ready to evaluate the dispersion of N_{ξ} estimated using Eq. (??). For this purpose, we used the standard formula for the dispersion of a function of random variables,

$$\sigma_{N_{\xi}}^{2} = \sum_{v} \left(\frac{\partial N_{\xi}}{\partial v}\right)^{2} \sigma_{v}^{2} + 2\sum_{v \neq u} \left(\frac{\partial N_{\xi}}{\partial v}\right) \left(\frac{\partial N_{\xi}}{\partial u}\right) Cov_{v,u} .$$
(A18)

Here, v and u denote arguments of the function N_{ξ} , which are $n(\xi) \equiv n$, $n(0) \equiv n^0$, $\tilde{E}(\xi)$ and $\tilde{S}(\xi)$; σ_v^2 stands for squared variance of v, and $Cov_{v,u}$ denotes covariance between v and u.

Let us explicitly write out the estimation of the variances and covariances. According to Eq. (A4), $\sigma_{n^0}^2$ can be estimated as

$$\sigma_{n^0}^2 = n^0 . \tag{A19}$$

Further, from Eq. (A12), one gets

$$= n$$
 . (A20)

Next, $\sigma_{\vec{E}}^2$ and $\sigma_{\vec{S}}^2$ can be obtained from Eq. (A16) and Eq. (A17).

 σ^2

Finally, note that there are only two dependent random variables in Eq. (??) - n and n^0 . Their covariance can be calculated using Eq. (A3), Eq. (A8) and Eq. (A9),

$$Cov_{n^0,n} = E\nu + S\mu = M(n)$$
. (A21)

Therefore this covariance can be estimated as n.

By calculating the partial derivatives of N_{ξ} in Eq. (A18) and substituting the obtained expressions for variances and covariances, we obtain the final result:

$$\sigma_{N_{\xi}}^{2} = \frac{(n-n^{0}\tilde{S})^{2}}{(\tilde{E}-\tilde{S})^{4}} \cdot \sigma_{\tilde{E}}^{2} + \frac{(n-n^{0}\tilde{E})^{2}}{(\tilde{E}-\tilde{S})^{4}} \cdot \sigma_{\tilde{S}}^{2} + \frac{n+n^{0}(\tilde{S})^{2}-2n\tilde{S}}{(\tilde{E}-\tilde{S})^{2}}$$
(A22)

7)

^{*} E-mail: matseiko.av@phystech.edu

[†] E-mail: ivan.kharuk@phystech.edu

Про нейросети

Основы нейронных сетей

написанный человеком алгоритм решения задачи.

Как выделить признаки?

"Программа" - обучающийся на примерах алгоритм выделения оптимальных признаков.

Программы, создающие оптимальные алгоритмы

Основы нейронных сетей

Пример: по координате точки на плоскости предсказать, лежит ли она внутри окружности единичного радиуса.

Предсказание:

[0;1], 0 - внутри, 1 - снаружи

Мера ошибки:

штраф = |предсказание - правда| ≥ 0

Инициализация: Выбираем случайно w и b

Оптимизация:

Пока возможно улучшение:

- 1. Для заданной точки, считаем предсказание
- Считаем величину функции штрафа
- Методом градиентного спуска изменяем w и b, чтобы минимизировать штраф.
- Берем следующий "обучающий пример"

Итог:

Оптимальные значения w и b.

Найденные оптимальные параметры и есть итоговая "программа".

Сила машинного обучения

Нейросеть способна аппроксимировать любую функцию

Графовые сети

Графы позволяют учитывать более сложные связи в данных

Графовые сети

Графовые сети "обновляют" граф: на следующем шаге значение вершины является функцией от а) её соседей, б) связывающих рёбер, в) глобальных агрегированных свойств графа.

Для реконструкции угла прилета, агрегатируется информация со всего графа.

```
Свёрточная сеть и resnet
```


Рекуррентная сеть

Про углы

Нейронная сеть

- Используются:

A) сверточная нейронная сеть(CNN) на основе сети ResNet [3]

Б) графовая сверточная нейронная сеть (EdgeGNN[4])

 Работа сети оценивается по медианным угловым разрешениям

[3] arxiv.org/abs/1512.03385 [4] arxiv.org/abs/1801.07829

Архитектура CNN

Нейтрино : Угловые разрешения GCN

Нейтрино : Угловые разрешения CNN

Мюоны : Угловые разрешения

Нейтрино: Восстановленные углы

Мюоны: Восстановленные углы

