Silicon microstrip detectors for investigation of proton radioactivity

Khamidullin Bulat, Intern researcher JINR, Flerov's Laboratory of Nuclear Reactions Sector №6 "Structure of light exotic nuclei"

XXVIII International conference AYSS-2024

October 31, 2024 Dubna, Russia

1

Silicon microstrip tracking detectors FOOT

Population of ⁷C state

- Test run Feb. 2024;
- The main experiment 2025;

Tracking detector FOOT

- 640 strips;
- Single-sided detector;
- 10x10 cm² area;
- 150 μm thickness;
- 150 µm strip size;
- Front-end electronics.

Silicon pixel detector **ALPIDE**

- Intended for a more precise tracks reconstruction;
- 2 flexible circuit boards (FCB);
- 6 silicon chips on each FCB;
- 1.5x3 cm² chip area, 100 μ m thick;
- Each chip 512x1024 pixels;
- Carbon plate (10x10 cm², 1 mm

thick).

Goal

 Full simulation of the experiment (geometry, detectors functionality, reaction, tracks and vertex reconstruction)

Goal

 Full simulation of the experiment (geometry, detectors functionality, reaction, tracks and vertex reconstruction)

ExpertRoot

- Derivative of FairRoot (includes Geant4, ROOT, etc...);
- Developed for the needs of EXPERT and ACCULINNA-2 (JINR)

https://github.com/FLNR-JINR/er

⁹C beam characteristics

- E_{9C} = 500 MeV/u;
- XY spot with r = 1 cm;
- $\phi = [0;360]^{\circ};$
- • θ = Gaussian

$$(\theta_0 = 0^\circ, \sigma_\theta = 0.5^\circ).$$

⁹C beam characteristics

- E_{9C} = 500 MeV/u;
- XY spot with r = 1 cm;
- $\phi = [0;360]^{\circ};$
- • θ = Gaussian

$$(\theta_0 = 0^\circ, \sigma_\theta = 0.5^\circ).$$

Reaction model

- ⁹Be target, 5.5 cm thick;
- ${}^9C \rightarrow {}^7C$:
 - fragmentation on ⁹Be;
- T_{decay}(⁷C) ~ 10⁻²¹ S;
- Uniform ⁷C excitation
 - energy:
 - $(0 < E_{exc} < 20 \text{ MeV});$
- Phase space generator of ⁷C decay.

Reaction model

- ⁹Be target, 5.5 cm thick;
- ${}^9C \rightarrow {}^7C$:
 - fragmentation on ⁹Be;
- T_{decay}(⁷C) ~ 10⁻²¹ S;
- Uniform ⁷C excitation energy:
 - $(0 < E_{exc} < 20 \text{ MeV});$
- Phase space generator of ⁷C decay.

Geometrical efficiency (ALPIDE)

• decay vertex

X and Y FOOT detectors

X and Y FOOT detectors 22

• decay vertex

Signal in strips

3p decay vertex reconstruction

Conclusion

- Kinematics of ⁷C state population is studied;
- Preliminary implementation of ALPIDE pixel detector in ExpertRoot

(in addition to existing FOOT detectors);

• Geometrical efficiency of decay products registration is greatly affected by excitation energy:

90.5% (0 < E_{exc} < 20 MeV),

99.5% (0 < E_{exc} < 10 MeV).

• Vertex reconstruction for a case of 3p decay is investigated, the dispersion of reconstruction σ_{3p} = 0.5 cm.

Outlook

- Hit reconstruction and track finding in case of a rotated pair of FOOT detectors, accountance of clusters;
- Further improvement of the ALPIDE detector (cluster consideration, detector inherit efficiency...);
- Vertex reconstruction in case of four- and five product decay.

Backup slides

ALPIDE pixels implementation

Energy deposit cuts on decay products

Θ between track segments for decay products

2p decay vertex reconstruction

Addition of 3rd proton – 4 more fake hits, 1 true.

Tracks for 3p decay

- 9 reconstructed track candidates;
- Probability of hitting the same strip by different protons is negligible;
- Hits from different protons can't have the same X or Y coordinates;
- Only certain combinations of tracks can be valid, better precision of vertex finding for more protons.

